数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3383|回复: 4

希尔伯特认为是难题之二之答案

[复制链接]
发表于 2022-11-4 18:01 | 显示全部楼层 |阅读模式
解函数不定方程A^(16n+2)+B^(16n+6)=C^(16n+10)
求出此不定方程的正整数通解式?
其中一个答案是:
A=2^(8n^2+7n+1)*u*v*[u^(16n+2)-v^(16n+2)]^[(64n^2+64n+15)k+16n^2+18n+5]*[u^(16n+2)+v^(16n+2)]^[(64n^2+64n+15)k+40n^2+39n+9]
B=2^(8n^2+5n)*[u^(16n+2)-v^(16n+2)]^[(64n^2+48n+5)k+16n^2+14n+2]*[u^(16n+2)+v^(16n+2)]^[(64n^2+48n+5)k+40n^2+29n+3]
C=2^(8n^2+3n)*[u^(16n+2)-v^(16n+2)]^[(64n^2+32n+3)k+16n^2+10n+1]*[u^(16n+2)+v^(16n+2)]^[(64n^2+32n+3)k+40n^2+19n+2]
其中,n、k为0或正整数,u、v为正整数,u>v。
 楼主| 发表于 2022-11-6 19:40 | 显示全部楼层
(1)解函数不定方程A^(4n+4)+B^(4n+2)=C^(8n+6)
求出此不定方程的正整数通解式?其中,n为正整数
其中一个答案是:
A=2^(8n^2+6n+2)*u*v*[u^(4n+4)-v^(4n+4)]^[(8n^2+10n+3)k+8n^2+6n]*[u^(4n+4)+v^(4n+4)]^[(8n^2+10n+3)k+8n+4]
B=2^(8n^2+10n+3)*[u^(4n+4)-v^(4n+4)]^[(8n^2+14n+6)k+8n^2+10n+1]*[u^(4n+4)+v^(4n+4)]^[(8n^2+14n+6)k+8n+8]
C=2^(4n^2+4n+1)*[u^(4n+4)-v^(4n+4)]^[(4n^2+6n+2)k+4n^2+4n]*[u^(4n+4)+v^(4n+4)]^[(4n^2+6n+2)k+4n+3]
其中,n、k、u、v为正整数,u>v。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-26 14:53 , Processed in 0.075713 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表