|
简单才是最好!这是最小解。
有这样一串数: \(a(n)=\lfloor\frac{2n}{3}\rfloor\)
1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, ...
\((2^0)^{2}+(2^0)^{2}=(2^3)^{1}\)
\((2^1)^{2}+(2^1)^{2}=(2^1)^{3}\)
\((2^4)^{2}+(2^2)^{4}=(2^3)^{3}\)
\((2^2)^{4}+(2^2)^{4}=(2^3)^{3}\)
\((2^1)^{4}+(2^1)^{4}=(2^1)^{5}\)
\((2^6)^{4}+(2^4)^{6}=(2^5)^{5}\)
\((2^4)^{6}+(2^4)^{6}=(2^5)^{5}\)
\((2^1)^{6}+(2^1)^{6}=(2^1)^{7}\)
\((2^8)^{6}+(2^6)^{8}=(2^7)^{7}\)
\((2^6)^{8}+(2^6)^{8}=(2^7)^{7}\)
\((2^1)^{8}+(2^1)^{8}=(2^1)^{9}\) |
|