|
本帖最后由 shuxuestar 于 2023-3-13 15:24 编辑
cos(A)/(cos(A) + 2*cos(B)*cos(C)) + cos(B)/(cos(B) + 2*cos(A)*cos(C)) + cos(C)/(cos(C) + 2*cos(B)*cos(A));
(三角形中C=180-A-B);
积化和差化为:
cosA/cos(B - C) + cosB/cos(A - C) + cosC/cos(A-B ).
锐角三角形中ABC余弦均为正数,(B - C),(A - C),(A-B) 余弦均为正数,可知上式为正数相加.
故可应用几何平均值不等式 :
cosA/cos(B - C) + cosB/cos(A - C) + cosC/cos(A-B ) 》
3*(cos(A)*cos(B)*cos(C)/(cos(B - C)*cos(A - C)*cos(-B + A)))^1/3;
当3个相等时等式成立:
cosA/cos(B - C)=cosB/cos(A - C)=cosC/cos(A-B);(C=180-A-B).
不需详细解算(因解唯一),三式相等如正三角形 :
cos60/1=cos60/1=cos60/1=1/2.
算得:
cosA/cos(B - C) + cosB/cos(A - C) + cosC/cos(A-B ) 》3/2.
证题目成立
|
|