数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3861|回复: 4

证明题

[复制链接]
发表于 2023-4-2 21:24 | 显示全部楼层 |阅读模式
本帖最后由 chenjiahao 于 2023-4-2 21:24 编辑



如图,A点位于(0,0),B点位于(0,2),C点位于(7,-4),
A,B,C都在\(\bigcirc ABC\)上,
分别作\(AB{,}BC\)
过C点作\(\bigcirc ABC\)的切线\(CI\),
过A点作\(CI\)的垂线\(AI\),垂足I,
D为\(CI\)与\(\bigcirc ABC\)的交点,
过D点作\(AC\)的垂线\(DE\),垂足E,
过E点作\(BC\)的垂线\(EF\),垂足F,
H为\(EF\)与\(\bigcirc ABC\)的交点,
G为\(DE\)与\(BC\)的交点,
连结\(DH{,}FG\)


①证明:\(DH=FG\)
②C还位于哪个点时,\(DH=FG\)仍成立

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2023-4-3 16:05 | 显示全部楼层
当 C 点坐标为 (7, -4) 时并不能保证 HD = GF。因为此时 HD=0.21486149533989896, 而  GF=0.2466819194792003。二者并不相等。

只有当 C 点坐标为 (7, -3.822726165554712) 时才有 HD = GF = 0.247079464822713,

或者当 C 点坐标为 (7, -5.780787773863573) 时也有 HD = GF = 0.22026169856688738。

当然,如果 C 点的横坐标由 7 改为其它值时,符合题目要求的 C 点的纵坐标也将变化。
回复 支持 反对

使用道具 举报

发表于 2023-4-3 16:16 | 显示全部楼层
本帖最后由 天山草 于 2023-4-3 16:53 编辑



用 MMA 写的程序代码:
  1. Clear["Global`*"];
  2. \!\(\*OverscriptBox[\(a\), \(_\)]\) = a = 0; b = 0 + 2 I; \!\(\*OverscriptBox[\(b\), \(_\)]\) = 0 - 2 I; c = 7 + t I;
  3. \!\(\*OverscriptBox[\(c\), \(_\)]\) = 7 - t I;WX[a_, b_, c_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + b \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + c \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a))/(\!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b -  a)); (* \[EmptyUpTriangle]ABC的外心*)
  4. \!\(\*OverscriptBox[\(WX\), \(_\)]\)[a_, b_, c_] := (\!\(\*OverscriptBox[\(a\), \(_\)]\) (\!\(\*OverscriptBox[\(b\), \(_\)]\) (a - b) +
  5. \!\(\*OverscriptBox[\(c\), \(_\)]\) (c - a)) + \!\(\*OverscriptBox[\(b\), \(_\)]\) \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - c))/(
  6. \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a));
  7. o = Simplify@WX[a, b, c]; \!\(\*OverscriptBox[\(o\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(WX\), \(_\)]\)[a, b, c];
  8. Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\)) - k1 (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
  9. \!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\) - (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
  10. k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\));
  11. \!\(\*OverscriptBox[\(k\), \(_\)]\)[a_, b_] := (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\))/(a - b);(*复斜率定义*)
  12. i = Simplify@Jd[-k[o, c], c, k[o, c], a]; \!\(\*OverscriptBox[\(i\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[o, c], c, k[o, c], a];
  13. W1 = Simplify@Solve[{(o - a) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == (o - d) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)), k[a, d] == k[d, i], d != a}, {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)}];
  14. {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)} = {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)} /. Last[W1];
  15. e = Simplify@Jd[-k[a, c], d, k[a, c], a]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[a, c], d, k[a, c], a];
  16. f = Simplify@Jd[-k[b, c], e, k[b, c], b]; \!\(\*OverscriptBox[\(f\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[b, c], e, k[b, c], b];
  17. g = Simplify@Jd[k[b, c], b, k[d, e], d]; \!\(\*OverscriptBox[\(g\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k[b, c], b, k[d, e], d];
  18. W = {h, \!\(\*OverscriptBox[\(h\), \(_\)]\)} /. Simplify@Solve[{(o - a) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == (o - h) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(h\), \(_\)]\)), k[f, e] == k[e, h]}, {h, \!\(\*OverscriptBox[\(h\), \(_\)]\)}] // Factor // Flatten ;h = Part[W, 3]; \!\(\*OverscriptBox[\(h\), \(_\)]\) = Part[W, 4];
  19. NSolve[{(h - d) (\!\(\*OverscriptBox[\(h\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) ==
  20. (g - f) (\!\(\*OverscriptBox[\(g\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)),  t \[Element] \[DoubleStruckCapitalR]}, {t}]
  21. Print["当 s = 7、t = -3.822726165554712 时:"]
  22. {D -> d} /. {s -> 7, t -> -3.822726165554712`}
  23. {H -> h} /. {s -> 7, t -> -3.822726165554712`}
  24. {G -> g} /. {s -> 7, t -> -3.822726165554712`}
  25. {F -> f} /. {s -> 7, t -> -3.822726165554712`}
  26. {HD -> Abs[(h - d)], GF -> Abs[(g - f)]} /. {s -> 7,  t -> -3.822726165554712`}
  27. Print["测试 HD = GF 是否成立:"]
  28. Simplify[Abs[(h - d)] == Abs[(g - f)]] /. {s -> 7,   t -> -3.822726165554712`}
  29. Print["当 s = 7、t = -5.780787773863573 时:"]
  30. {D -> d} /. {s -> 7, t -> -5.780787773863573`}
  31. {H -> h} /. {s -> 7, t -> -5.780787773863573`}
  32. {G -> g} /. {s -> 7, t -> -5.780787773863573`}
  33. {F -> f} /. {s -> 7, t -> -5.780787773863573`}
  34. {HD -> Abs[(h - d)], GF -> Abs[(g - f)]} /. {s -> 7,  t -> -5.780787773863573`}
  35. Print["测试 HD = GF 是否成立:"]
  36. Simplify[Abs[(h - d)] == Abs[(g - f)]] /. {s -> 7,  t -> -5.780787773863573`}
复制代码


程序运行结果:



说明: t 应为实数,在 s = 7 的条件下,实数解只有两个。其它许多非实数解都是无效解。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

发表于 2023-4-3 16:40 | 显示全部楼层
原题给的 C 点坐标 ( 7, -4 ) 为什么不能保证  HD = GF 成立?

见以下计算:



可见从小数第二位起 HD 就与 GF 不一样了,因此它们并不相等。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

谢谢老师!我可能是数据错了  发表于 2023-4-3 21:43
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 04:11 , Processed in 0.082078 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表