|
本帖最后由 天山草 于 2023-4-3 16:53 编辑
用 MMA 写的程序代码:
- Clear["Global`*"];
- \!\(\*OverscriptBox[\(a\), \(_\)]\) = a = 0; b = 0 + 2 I; \!\(\*OverscriptBox[\(b\), \(_\)]\) = 0 - 2 I; c = 7 + t I;
- \!\(\*OverscriptBox[\(c\), \(_\)]\) = 7 - t I;WX[a_, b_, c_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + b \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + c \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a))/(\!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a)); (* \[EmptyUpTriangle]ABC的外心*)
- \!\(\*OverscriptBox[\(WX\), \(_\)]\)[a_, b_, c_] := (\!\(\*OverscriptBox[\(a\), \(_\)]\) (\!\(\*OverscriptBox[\(b\), \(_\)]\) (a - b) +
- \!\(\*OverscriptBox[\(c\), \(_\)]\) (c - a)) + \!\(\*OverscriptBox[\(b\), \(_\)]\) \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - c))/(
- \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a));
- o = Simplify@WX[a, b, c]; \!\(\*OverscriptBox[\(o\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(WX\), \(_\)]\)[a, b, c];
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\)) - k1 (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
- \!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\) - (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\));
- \!\(\*OverscriptBox[\(k\), \(_\)]\)[a_, b_] := (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\))/(a - b);(*复斜率定义*)
- i = Simplify@Jd[-k[o, c], c, k[o, c], a]; \!\(\*OverscriptBox[\(i\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[o, c], c, k[o, c], a];
- W1 = Simplify@Solve[{(o - a) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == (o - d) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)), k[a, d] == k[d, i], d != a}, {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)}];
- {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)} = {d, \!\(\*OverscriptBox[\(d\), \(_\)]\)} /. Last[W1];
- e = Simplify@Jd[-k[a, c], d, k[a, c], a]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[a, c], d, k[a, c], a];
- f = Simplify@Jd[-k[b, c], e, k[b, c], b]; \!\(\*OverscriptBox[\(f\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[b, c], e, k[b, c], b];
- g = Simplify@Jd[k[b, c], b, k[d, e], d]; \!\(\*OverscriptBox[\(g\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k[b, c], b, k[d, e], d];
- W = {h, \!\(\*OverscriptBox[\(h\), \(_\)]\)} /. Simplify@Solve[{(o - a) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) == (o - h) (\!\(\*OverscriptBox[\(o\), \(_\)]\) - \!\(\*OverscriptBox[\(h\), \(_\)]\)), k[f, e] == k[e, h]}, {h, \!\(\*OverscriptBox[\(h\), \(_\)]\)}] // Factor // Flatten ;h = Part[W, 3]; \!\(\*OverscriptBox[\(h\), \(_\)]\) = Part[W, 4];
- NSolve[{(h - d) (\!\(\*OverscriptBox[\(h\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\)) ==
- (g - f) (\!\(\*OverscriptBox[\(g\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)), t \[Element] \[DoubleStruckCapitalR]}, {t}]
- Print["当 s = 7、t = -3.822726165554712 时:"]
- {D -> d} /. {s -> 7, t -> -3.822726165554712`}
- {H -> h} /. {s -> 7, t -> -3.822726165554712`}
- {G -> g} /. {s -> 7, t -> -3.822726165554712`}
- {F -> f} /. {s -> 7, t -> -3.822726165554712`}
- {HD -> Abs[(h - d)], GF -> Abs[(g - f)]} /. {s -> 7, t -> -3.822726165554712`}
- Print["测试 HD = GF 是否成立:"]
- Simplify[Abs[(h - d)] == Abs[(g - f)]] /. {s -> 7, t -> -3.822726165554712`}
- Print["当 s = 7、t = -5.780787773863573 时:"]
- {D -> d} /. {s -> 7, t -> -5.780787773863573`}
- {H -> h} /. {s -> 7, t -> -5.780787773863573`}
- {G -> g} /. {s -> 7, t -> -5.780787773863573`}
- {F -> f} /. {s -> 7, t -> -5.780787773863573`}
- {HD -> Abs[(h - d)], GF -> Abs[(g - f)]} /. {s -> 7, t -> -5.780787773863573`}
- Print["测试 HD = GF 是否成立:"]
- Simplify[Abs[(h - d)] == Abs[(g - f)]] /. {s -> 7, t -> -5.780787773863573`}
复制代码
程序运行结果:
说明: t 应为实数,在 s = 7 的条件下,实数解只有两个。其它许多非实数解都是无效解。
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|