数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
12
返回列表 发新帖
楼主: cuikun-186

大偶数12^10的哥猜数下限值运用崔坤的公式给出结论

[复制链接]
发表于 2023-4-22 22:51 | 显示全部楼层
偶数拆分的素数对数量的计算值的精度,好像与【不同类型偶数的素数对】没有什么关系的。 因为我计算偶数的素对数量,从来不分什么类型的偶数的,基本上是计算连续的偶数为主。

对于≥6的任意大的偶数M来说:
可以用一个下界计算函数 inf(M)来表示,而inf(M)小于偶数M的实际表为两个素数和的数量真值S(m),有

S(m)≥inf(M)= (A-2)*0.5π(1- 2/r )* π[(p1-1)/(p1- 2)] /(1+.21) .--------  { 式1}
式中:
      p1系偶数含有的奇素数因子,p1≤ r ;

对于大偶数来说,比如说1000亿的大偶数,那么下界计算式inf(M)值的相对误差有多大呢?
以一些偶数的素对下界值 inf(M)的实例计算值来考察一下:

G(100000000000) = 149091160;
inf( 100000000000 )≈  142957976.6 , Δ≈-0.041137 ,infS( 100000000000 )= 107218482.41 ,
G(100000000002) = 268556111;
inf( 100000000002 )≈  257491343.1 , Δ≈-0.041201,infS( 100000000002 )= 107218482.41 ,
G(100000000004) = 111836359;
inf( 100000000004 )≈  107224584.4 , Δ≈-0.041239,infS( 100000000004 )= 107218482.41 ,
G(100000000006) = 111843604;
inf( 100000000006 )≈  107245660.7 , Δ≈-0.041110,infS( 100000000006 )= 107218482.42 ,
G(100000000008) = 223655943;
inf( 100000000008 )≈  214436964.8 , Δ≈-0.041219,infS( 100000000008 )= 107218482.42 ,
G(100000000010) = 150645060;
inf( 100000000010 )≈  144447965.8 , Δ≈-0.041137,infS( 100000000010 )= 107218482.42 ,
G(100000000012) = 128533939;
inf( 100000000012 )≈  123239635.0 , Δ≈-0.041190,infS( 100000000012 )= 107218482.42 ,
G(100000000014) = 238586864;
inf( 100000000014 )≈  228760131.1 , Δ≈-0.041187,infS( 100000000014 )= 107218482.42 ,
G(100000000016) = 134188011;
inf( 100000000016 )≈  128662178.9 , Δ≈-0.041180,infS( 100000000016 )= 107218482.43 ,
G(100000000018) = 111942653;
inf( 100000000018 )≈  107340460.2 , Δ≈-0.041112,infS( 100000000018 )= 107218482.43 ,
G(100000000020) = 298192310
inf( 100000000020 )≈  285915953.2 , Δ≈-0.041169,infS( 100000000020 )= 107218482.43 ,
G(100000000022) = 124402721;
inf( 100000000022 )≈  119283555.6 , Δ≈-0.041150,infS( 100000000022 )= 107218482.43 ,
具体的下界素对计算式:
inf( 100000000000 ) = 1/(1+ .21 )*( 100000000000 /2 -2)*p(m) ≈ 142957976.6 ,
inf( 100000000002 ) = 1/(1+ .21 )*( 100000000002 /2 -2)*p(m) ≈ 257491343.1 ,
inf( 100000000004 ) = 1/(1+ .21 )*( 100000000004 /2 -2)*p(m) ≈ 107224584.4 ,
inf( 100000000006 ) = 1/(1+ .21 )*( 100000000006 /2 -2)*p(m) ≈ 107245660.7 ,
inf( 100000000008 ) = 1/(1+ .21 )*( 100000000008 /2 -2)*p(m) ≈ 214436964.8
inf( 100000000010 ) = 1/(1+ .21 )*( 100000000010 /2 -2)*p(m) ≈ 144447965.8 ,
inf( 100000000012 ) = 1/(1+ .21 )*( 100000000012 /2 -2)*p(m) ≈ 123239635.0 ,
inf( 100000000014 ) = 1/(1+ .21 )*( 100000000014 /2 -2)*p(m) ≈ 228760131.1 ,
inf( 100000000016 ) = 1/(1+ .21 )*( 100000000016 /2 -2)*p(m) ≈ 128662178.9 ,
inf( 100000000018 ) = 1/(1+ .21 )*( 100000000018 /2 -2)*p(m) ≈ 107340460.2 ,
inf( 100000000020 ) = 1/(1+ .21 )*( 100000000020 /2 -2)*p(m) ≈ 285915953.2 ,
inf( 100000000022 ) = 1/(1+ .21 )*( 100000000022 /2 -2)*p(m) ≈ 119283555.6 ,

显然,各个偶数的下界计算式inf(M)值略低于真值,相差实际上素对数量仅仅 4.2% 左右,波动性很小。它们并不存在所谓的偶数分类上的差异。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-23 06:42 | 显示全部楼层
愚工688 发表于 2023-4-22 22:51
偶数拆分的素数对数量的计算值的精度,好像与【不同类型偶数的素数对】没有什么关系的。 因为我计算偶数的 ...

非常感谢我的愚工老师给出的具体验证,哥猜路上我们意气风发!
回复 支持 反对

使用道具 举报

发表于 2023-4-23 11:15 | 显示全部楼层
愚工688 发表于 2023-4-22 14:51
偶数拆分的素数对数量的计算值的精度,好像与【不同类型偶数的素数对】没有什么关系的。 因为我计算偶数的 ...

当然修正系数1/(1+μ)的μ取0.21是适用全部大于5的偶数的情况,主要是防止小偶数时出现正相对误差的情况。
例如;
r=7的偶数区域(即7^2+3=52 起始的区域,下同):
S( 52 )= 3       Sp(m)≈ 1.714    δ(m)≈-.429   K(m)= 1       infS(m)≈ 1.41  

因为 infS(52)≈ 1.41,向上取整= 2,
所以:任意≥52 的偶数表为两个素数之和的表法数不少于2;
实际低位值偶数有 :S(68)=2 ;

r=11的偶数区域(即11^2+3=124 起始的区域,下同):
M= 124     S(m)= 5     Sp(m)≈ 3.506     δ(m)≈-.299    K(m)= 1       infS(m)≈ 2.9

因为 infS(124)≈ 2.9,向上取整= 3,
所以:任意≥124 的偶数表为两个素数之和的表法数不少于3;
实际低位值偶数有 :S(128)= 3;

r=13的偶数区域:
M= 172     S(m)= 6     Sp(m)≈ 4.154     δ(m)≈-.308    K(m)= 1       infS(m)≈ 3.43

因为 infS(172)≈ 3.43,向上取整= 4,
所以:任意≥172 的偶数表为两个素数之和的表法数不少于4;
实际低位值偶数有 :S(188)= 5;

r=17的偶数区域与r=19的偶数区域:
M= 292     S(m)= 8     Sp(m)≈ 6.283     δ(m)≈-.215    K(m)= 1       infS(m)≈ 5.19
M= 364     S(m)= 14    Sp(m)≈ 9.199     δ(m)≈-.343    K(m)= 1.309   infS(m)≈ 5.81

因为 infS(292)≈ 5.19,向上取整= 6,
所以:任意≥292 的偶数表为两个素数之和的表法数不少于6 ;
实际低位值偶数有 :S( 332 )= 6 ;
……
r=31的偶数区域:
M= 964     S(m)= 18    Sp(m)≈ 14.902    δ(m)≈-.172    K(m)= 1       infS(m)≈ 12.31

因为 infS(964)≈ 12.3,向上取整= 13,
所以:任意≥964 的偶数表为两个素数之和的表法数不少于13;
实际低位值偶数有:S( 992 )= 13 ;
……
可见在多个区域准确的确定了素对的下界值。
当然它的计算值精度一般讲起来是不太高的,尤其大偶数的情况。
若需要在大偶数情况时得到比较高的计算值精度,那么就必须对修正系数的μ值进行变动,采用比该偶数区域的偶数样本的平均值μ略微大5%的μ值作修正系数。
因此,在1000亿——1500亿范围我们可以用μ=0.162作修正系数,对区域内偶数的素数对数量的下界进行计算:


G(100000000000) = 149091160;
inf( 100000000000 )≈  148863296.6 , Δ≈-0.001528 ,infS( 100000000000 )= 111647472.43 , k(m)= 1.33333
G(100000000002) = 268556111;
inf( 100000000002 )≈  268127817.0 , Δ≈-0.001595 ,infS( 100000000002 )= 111647472.43 , k(m)= 2.40156
G(100000000004) = 111836359;
inf( 100000000004 )≈  111653826.5 , Δ≈-0.001632 ,infS( 100000000004 )= 111647472.43 , k(m)= 1.00006
G(100000000006) = 111843604;
inf( 100000000006 )≈  111675773.4 , Δ≈-0.001501 ,infS( 100000000006 )= 111647472.43 , k(m)= 1.00025
G(100000000008) = 223655943;
inf( 100000000008 )≈  223294944.9 , Δ≈-0.001614 ,infS( 100000000008 )= 111647472.43 , k(m)= 2
G(100000000010) = 150645060;
inf( 100000000010 )≈  150414834.4 , Δ≈-0.001528,infS( 100000000010 )= 111647472.44 , k(m)= 1.34723
G(100000000012) = 128533939;
inf( 100000000012 )≈  128330428.1 , Δ≈-0.001583,infS( 100000000012 )= 111647472.44 , k(m)= 1.14943
G(100000000014) = 238586864;
inf( 100000000014 )≈  238209773.7 , Δ≈-0.001581,infS( 100000000014 )= 111647472.44 , k(m)= 2.13359
G(100000000016) = 134188011;
inf( 100000000016 )≈  133976966.9 , Δ≈-0.001573,infS( 100000000016 )= 111647472.44 , k(m)= 1.2
G(100000000018) = 111942653;
inf( 100000000018 )≈  111774488.9 , Δ≈-0.001502,infS( 100000000018 )= 111647472.45 , k(m)= 1.00114
G(100000000020) = 298192310;
inf( 100000000020 )≈  297726593.2 , Δ≈-0.001562,infS( 100000000020 )= 111647472.45 , k(m)= 2.66667
G(100000000022) = 124402721;
inf( 100000000022 )≈  124210930.6 , Δ≈-0.001542,infS( 100000000022 )= 111647472.45 , k(m)= 1.11253

Sp( 100000000000 ) = 1/(1+ .162 )*( 100000000000 /2 -2)*p(m) ≈ 148863296.6 , k(m)= 1.33333
Sp( 100000000002 ) = 1/(1+ .162 )*( 100000000002 /2 -2)*p(m) ≈ 268127817 , k(m)= 2.40156
Sp( 100000000004 ) = 1/(1+ .162 )*( 100000000004 /2 -2)*p(m) ≈ 111653826.5 , k(m)= 1.00006
Sp( 100000000006 ) = 1/(1+ .162 )*( 100000000006 /2 -2)*p(m) ≈ 111675773.4 , k(m)= 1.00025
Sp( 100000000008 ) = 1/(1+ .162 )*( 100000000008 /2 -2)*p(m) ≈ 223294944.9 , k(m)= 2
Sp( 100000000010 ) = 1/(1+ .162 )*( 100000000010 /2 -2)*p(m) ≈ 150414834.4 , k(m)= 1.34723
Sp( 100000000012 ) = 1/(1+ .162 )*( 100000000012 /2 -2)*p(m) ≈ 128330428.1 , k(m)= 1.14943
Sp( 100000000014 ) = 1/(1+ .162 )*( 100000000014 /2 -2)*p(m) ≈ 238209773.7 , k(m)= 2.13359
Sp( 100000000016 ) = 1/(1+ .162 )*( 100000000016 /2 -2)*p(m) ≈ 133976966.9 , k(m)= 1.2
Sp( 100000000018 ) = 1/(1+ .162 )*( 100000000018 /2 -2)*p(m) ≈ 111774488.9 , k(m)= 1.00114
Sp( 100000000020 ) = 1/(1+ .162 )*( 100000000020 /2 -2)*p(m) ≈ 297726593.2 , k(m)= 2.66667
Sp( 100000000022 ) = 1/(1+ .162 )*( 100000000022 /2 -2)*p(m) ≈ 124210930.6 , k(m)= 1.11253

G(110000000000) = 180801081;
inf( 110000000000 )≈  180550355.5 , Δ≈-0.001387 ,infS( 110000000000 )= 121871489.95 ,
G(110000000002) = 122052830;
inf( 110000000002 )≈  121871490 , Δ≈-0.001486 ,infS( 110000000002 )= 121871489.95 ,
G(110000000004) = 250274235;
inf( 110000000004 )≈  249916814.3 , Δ≈-0.001428 ,infS( 110000000004 )= 121871489.95 ,
G(110000000006) = 133138114;
inf( 110000000006 )≈  132950716.3 , Δ≈-0.001408 ,infS( 110000000006 )= 121871489.95 ,
G(110000000008) = 129058444;
inf( 110000000008 )≈  128868117.6 , Δ≈-0.001475 ,infS( 110000000008 )= 121871489.96 ,
G(110000000010) = 325654239;
inf( 110000000010 )≈  325204309 , Δ≈-0.001382 ,infS( 110000000010 )= 121871489.96 ,
计算式:
inf( 110000000000 ) = 1/(1+ .162 )*( 110000000000 /2 -2)*p(m) ≈ 180550355.5 ,
inf( 110000000002 ) = 1/(1+ .162 )*( 110000000002 /2 -2)*p(m) ≈ 121871490 ,  
inf( 110000000004 ) = 1/(1+ .162 )*( 110000000004 /2 -2)*p(m) ≈ 249916814.3 ,
inf( 110000000006 ) = 1/(1+ .162 )*( 110000000006 /2 -2)*p(m) ≈ 132950716.3 ,
inf( 110000000008 ) = 1/(1+ .162 )*( 110000000008 /2 -2)*p(m) ≈ 128868117.6 ,
inf( 110000000010 ) = 1/(1+ .162 )*( 110000000010 /2 -2)*p(m) ≈ 325204309 ,  

G(120000000000) = 352503092;
inf( 120000000000 )≈  352131790.3 , Δ≈-0.001053 ,infS( 120000000000 )= 132049421.35 ,
G(120000000002) = 137230841;
inf( 120000000002 )≈  137072275.3 , Δ≈-0.001155 ,infS( 120000000002 )= 132049421.35 ,
G(120000000004) = 132188594;
inf( 120000000004 )≈  132049421.4 , Δ≈-0.001053 ,infS( 120000000004 )= 132049421.35 ,
G(120000000006) = 280130367;
inf( 120000000006 )≈  279807448.7 , Δ≈-0.001153 ,infS( 120000000006 )= 132049421.35 ,
G(120000000008) = 158634730;
inf( 120000000008 )≈  158459305.6 , Δ≈-0.001106 ,infS( 120000000008 )= 132049421.35 ,
G(120000000010) = 209105088;
inf( 120000000010 )≈  208865513.7 , Δ≈-0.001146 ,infS( 120000000010 )= 132049421.36 ,
计算式:
inf( 120000000000 ) = 1/(1+ .162 )*( 120000000000 /2 -2)*p(m) ≈ 352131790.3 ,
inf( 120000000002 ) = 1/(1+ .162 )*( 120000000002 /2 -2)*p(m) ≈ 137072275.3 ,
inf( 120000000004 ) = 1/(1+ .162 )*( 120000000004 /2 -2)*p(m) ≈ 132049421.4 ,
inf( 120000000006 ) = 1/(1+ .162 )*( 120000000006 /2 -2)*p(m) ≈ 279807448.7 ,
inf( 120000000008 ) = 1/(1+ .162 )*( 120000000008 /2 -2)*p(m) ≈ 158459305.6 ,
inf( 120000000010 ) = 1/(1+ .162 )*( 120000000010 /2 -2)*p(m) ≈ 208865513.7 ,

G(130000000000) = 206957741;
inf( 130000000000 )≈  206780555 , Δ≈-0.000856 ,infS( 130000000000 )= 142161631.58 ,
G(130000000002) = 291494087;
inf( 130000000002 )≈  291257976.9 , Δ≈-0.000810 ,infS( 130000000002 )= 142161631.59 ,
G(130000000004) = 170724988;
inf( 130000000004 )≈  170593957.9 , Δ≈-0.000767 ,infS( 130000000004 )= 142161631.59 ,
G(130000000006) = 142661257;
inf( 130000000006 )≈  142542144.6 , Δ≈-0.000835 ,infS( 130000000006 )= 142161631.59 ,
G(130000000008) = 303509249;
inf( 130000000008 )≈  303278147.4 , Δ≈-0.000761 ,infS( 130000000008 )= 142161631.59 ,
G(130000000010) = 189710906;
inf( 130000000010 )≈  189562218 , Δ≈-0.000784 ,infS( 130000000010 )= 142161631.59 ,
计算式:
inf( 130000000000 ) = 1/(1+ .162 )*( 130000000000 /2 -2)*p(m) ≈ 206780555 ,
inf( 130000000002 ) = 1/(1+ .162 )*( 130000000002 /2 -2)*p(m) ≈ 291257976.9 ,
inf( 130000000004 ) = 1/(1+ .162 )*( 130000000004 /2 -2)*p(m) ≈ 170593957.9 ,
inf( 130000000006 ) = 1/(1+ .162 )*( 130000000006 /2 -2)*p(m) ≈ 142542144.6 ,
inf( 130000000008 ) = 1/(1+ .162 )*( 130000000008 /2 -2)*p(m) ≈ 303278147.4 ,
inf( 130000000010 ) = 1/(1+ .162 )*( 130000000010 /2 -2)*p(m) ≈ 189562218 ,

G(140000000000) = 243685341;
inf( 140000000000 )≈  243569424.5 , Δ≈-0.0004757,infS( 140000000000 )= 152230890.33 ,
G(140000000002) = 155285474;
inf( 140000000002 )≈  155215809.8 , Δ≈-0.0004486,infS( 140000000002 )= 152230890.33 ,
G(140000000004) = 313780435;
inf( 140000000004 )≈  313627946.5 , Δ≈-0.0004860,infS( 140000000004 )= 152230890.33 ,
G(140000000006) = 172925643;
inf( 140000000006 )≈  172843261.8 , Δ≈-0.0004764,infS( 140000000006 )= 152230890.34 ,
G(140000000008) = 174152737;
inf( 140000000008 )≈  174063267.1 , Δ≈-0.0005137,infS( 140000000008 )= 152230890.34 ,
G(140000000010) = 443043007;
inf( 140000000010 )≈  442853499.2 , Δ≈-0.0004277,infS( 140000000010 )= 152230890.34 ,

计算式:
inf( 140000000000 ) = 1/(1+ .162 )*( 140000000000 /2 -2)*p(m) ≈ 243569424.5 ,
inf( 140000000002 ) = 1/(1+ .162 )*( 140000000002 /2 -2)*p(m) ≈ 155215809.8 ,
inf( 140000000004 ) = 1/(1+ .162 )*( 140000000004 /2 -2)*p(m) ≈ 313627946.5 ,
inf( 140000000006 ) = 1/(1+ .162 )*( 140000000006 /2 -2)*p(m) ≈ 172843261.8 ,
inf( 140000000008 ) = 1/(1+ .162 )*( 140000000008 /2 -2)*p(m) ≈ 174063267.1 ,
inf( 140000000010 ) = 1/(1+ .162 )*( 140000000010 /2 -2)*p(m) ≈ 442853499.2 ,

G(150000000000) = 432693233;
inf( 150000000000 )≈  432611673 , Δ≈-0.0001885,infS( m )= 162229377.38 , k(m)= 2.66667
G(150000000002) = 162281514;
inf( 150000000002 )≈  162229377.4 , Δ≈-0.000321,infS( m )= 162229377.38 , k(m)= 1
G(150000000004) = 173090450;
inf( 150000000004 )≈  173052270.7 , Δ≈-0.0002206,infS( m )= 162229377.38 , k(m)= 1.06671
G(150000000006) = 324533701;
inf( 150000000006 )≈  324477220.4 , Δ≈-0.0001740,infS( m )= 162229377.39 , k(m)= 2.00011
G(150000000008) = 163640122;
inf( 150000000008 )≈  163599942.2 , Δ≈-0.0002455,infS( m )= 162229377.39 , k(m)= 1.00845
G(150000000010) = 259646691;
inf( 150000000010 )≈  259567003.8 , Δ≈-0.0003069,infS( m )= 162229377.39 , k(m)= 1.6

计算式:
inf( 150000000000 ) = 1/(1+ .162 )*( 150000000000 /2 -2)*p(m) ≈ 432611673 ,
inf( 150000000002 ) = 1/(1+ .162 )*( 150000000002 /2 -2)*p(m) ≈ 162229377.4 ,
inf( 150000000004 ) = 1/(1+ .162 )*( 150000000004 /2 -2)*p(m) ≈ 173052270.7 ,
inf( 150000000006 ) = 1/(1+ .162 )*( 150000000006 /2 -2)*p(m) ≈ 324477220.4 ,
inf( 150000000008 ) = 1/(1+ .162 )*( 150000000008 /2 -2)*p(m) ≈ 163599942.2 ,
inf( 150000000010 ) = 1/(1+ .162 )*( 150000000010 /2 -2)*p(m) ≈ 259567003.8 ,

G(160000000000) = 229574132;
inf( 160000000000 )≈  229559235.1 , Δ≈-0.0000649,infS( 160000000000 )= 172169426.33 , k(m)=
G(160000000002) = 367315420;
inf( 160000000002 )≈  367295743.5 , Δ≈-0.0000536,infS( 160000000002 )= 172169426.33 , k(m)=
G(160000000004) = 187842530;
inf( 160000000004 )≈  187821192.4 , Δ≈-0.0001136,infS( 160000000004 )= 172169426.34 , k(m)=
G(160000000006) = 233415788;
inf( 160000000006 )≈  233400374.2 , Δ≈-0.00006604,infS( 160000000006 )= 172169426.34 , k(m)=
G(160000000008) = 364844031;
inf( 160000000008 )≈  364820136.6 , Δ≈-0.00006549,infS( 160000000008 )= 172169426.34 , k(m)=
G(160000000010) = 229594896;
inf( 160000000010 )≈  229576603.6 , Δ≈-0.00007968,infS( 160000000010 )= 172169426.34 , k(m)=

计算式:
inf( 160000000000 ) = 1/(1+ .162 )*( 160000000000 /2 -2)*p(m) ≈ 229559235.1
inf( 160000000002 ) = 1/(1+ .162 )*( 160000000002 /2 -2)*p(m) ≈ 367295743.5
inf( 160000000004 ) = 1/(1+ .162 )*( 160000000004 /2 -2)*p(m) ≈ 187821192.4
inf( 160000000006 ) = 1/(1+ .162 )*( 160000000006 /2 -2)*p(m) ≈ 233400374.2
inf( 160000000008 ) = 1/(1+ .162 )*( 160000000008 /2 -2)*p(m) ≈ 364820136.6
inf( 160000000010 ) = 1/(1+ .162 )*( 160000000010 /2 -2)*p(m) ≈ 229576603.6

由于1600亿的样本计算值的相对误差太小了,不能保证临近有偶数的相对误差会出现正相对误差值,故在素数对下界计算中不能采用过小的相对误差值,即把1600亿排除在范围之外。
G(170000000000) = 258900543;
inf( 170000000000 )≈  258966062.1 , Δ≈0.00025307 ,infS(  m )= 182085512.38 , k(m)= 1.42222
G(170000000002) = 218461602;
inf( 170000000002 )≈  218502614.9 , Δ≈0.00018774 ,infS(  m )= 182085512.39 , k(m)= 1.2
G(170000000004) = 381425390;
inf( 170000000004 )≈  381512502.2 , Δ≈0.00022839 ,infS(  m )= 182085512.39 , k(m)= 2.09524
G(170000000006) = 185153680;
inf( 170000000006 )≈  185181747.1 , Δ≈0.00015159 ,infS(  m )= 182085512.39 , k(m)= 1.017
G(170000000008) = 188343060;
inf( 170000000008 )≈  188364323.2 , Δ≈0.00011290 ,infS(  m )= 182085512.39 , k(m)= 1.03448
G(170000000010) = 494981724;
inf( 170000000010 )≈  495082177.5 , Δ≈0.00020249 ,infS(  m )= 182085512.39 , k(m)= 2.71895
计算式:
inf( 170000000000 ) = 1/(1+ .162 )*( 170000000000 /2 -2)*p(m) ≈ 258966062.1
inf( 170000000002 ) = 1/(1+ .162 )*( 170000000002 /2 -2)*p(m) ≈ 218502614.9
inf( 170000000004 ) = 1/(1+ .162 )*( 170000000004 /2 -2)*p(m) ≈ 381512502.2
inf( 170000000006 ) = 1/(1+ .162 )*( 170000000006 /2 -2)*p(m) ≈ 185181747.1
inf( 170000000008 ) = 1/(1+ .162 )*( 170000000008 /2 -2)*p(m) ≈ 188364323.2
inf( 170000000010 ) = 1/(1+ .162 )*( 170000000010 /2 -2)*p(m) ≈ 495082177.5
很显然,μ=0.162已经不适用于1700亿区域的偶数的下界计算了。

我对计算式的计算精度,起码要达到80%以上,精度低于80%的计算式,好像已经对不起“计算”这名称了,不值得关注。至于计算精度低于50%的计算式,只能归之于“垃圾级”的计算式了。

点评

愚工老师能给出个适用每个大于等于8的偶数的素对下限值公式吗?以没有反例为标准,因为数学崇尚一票否决制。  发表于 2023-4-23 12:46
回复 支持 反对

使用道具 举报

发表于 2023-4-23 14:59 | 显示全部楼层
本帖最后由 愚工688 于 2023-4-23 09:43 编辑
愚工688 发表于 2023-4-23 03:15
当然修正系数1/(1+μ)的μ取0.21是适用全部大于5的偶数的情况,主要是防止小偶数时出现正相对误差的情况 ...


11楼已经写清楚了!

对于≥6的任意大的偶数M来说:
可以用一个下界计算函数 inf(M)来表示,而inf(M)小于偶数M的实际表为两个素数和的数量真值S(m),有

S(m)≥inf(M)= (A-2)*0.5*π(1- 2/r )* π[(p1-1)/(p1- 2)] /(1+.21) .--------  { 式1}
式中:
      p1系偶数含有的奇素数因子,p1≤ r ;
      π——表示后面括号内的素数r,p1的连乘式。r为偶数根号内含有的素数,p1为偶数的素因子,且小于r。

点评

0.5π(1- 2/r )是什么意思?  发表于 2023-4-23 15:27
0.5π是什么意思?  发表于 2023-4-23 15:18
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-25 17:17 , Processed in 0.081820 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表