|

楼主 |
发表于 2023-4-23 09:41
|
显示全部楼层
本帖最后由 天山草 于 2023-4-23 09:42 编辑
程序代码:
- Clear["Global`*"];(*构图法b=0,c=1,u=\[ExponentialE]^\[ImaginaryI]\[Angle]\
- B ,v=\[ExponentialE]^\[ImaginaryI]\[Angle]C ,kAB=u^2,kAC=1/v^2*)
- \!\(\*OverscriptBox[\(b\), \(_\)]\) = b = 0; \!\(\*OverscriptBox[\(c\), \(_\)]\) = c = 1; a = (u^2 (v^2 - 1))/( u^2 v^2 - 1);
- \!\(\*OverscriptBox[\(a\), \(_\)]\) = (v^2 - 1)/(u^2 v^2 - 1); i = ( u (v - 1))/(u v - 1);
- \!\(\*OverscriptBox[\(i\), \(_\)]\) = (v - 1)/(u v - 1);d = (u (v^2 - 1))/(u^2 v + u (v^2 - 1) - v);
- \!\(\*OverscriptBox[\(d\), \(_\)]\) = d; m = 1/2; \!\(\*OverscriptBox[\(m\), \(_\)]\) =m;(*此构图下各点的坐标公式事先已算出,以上直接引用,不再推导*)
- n = \[Lambda] a; \!\(\*OverscriptBox[\(n\), \(_\)]\) = \[Lambda] \!\(\*OverscriptBox[\(a\), \(_\)]\);
- Simplify@Solve[{(m - n) (\!\(\*OverscriptBox[\(m\), \(_\)]\) - \!\(\*OverscriptBox[\(n\), \(_\)]\)) == 1/4}, {\[Lambda]}]; \[Lambda] = ((u^2 + 1) (u^2 v^2 - 1))/( 2 u^2 (v^2 - 1)); n = Simplify[\[Lambda] a];
- \!\(\*OverscriptBox[\(n\), \(_\)]\) = Simplify[\[Lambda] \!\(\*OverscriptBox[\(a\), \(_\)]\)];
- (*三角形的外心坐标:*)
- WX[a_, b_, c_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + b \!\(\*OverscriptBox[\(b\), \(_\)]\)(a - c) + c \!\(\*OverscriptBox[\(c\), \(_\)]\)(b - a) )/(\!\(\*OverscriptBox[\(a\), \(_\)]\)(c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\)(a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\)(b - a));
- \!\(\*OverscriptBox[\(WX\), \(_\)]\)[a_, b_, c_] := -((a \!\(\*OverscriptBox[\(a\), \(_\)]\)(\!\(\*OverscriptBox[\(c\), \(_\)]\) -
- \!\(\*OverscriptBox[\(b\), \(_\)]\)) + b \!\(\*OverscriptBox[\(b\), \(_\)]\)(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\)) + c \!\(\*OverscriptBox[\(c\), \(_\)]\)(\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)))/(
- \!\(\*OverscriptBox[\(a\), \(_\)]\)(c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\)(a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\)(b - a)));
- p = Simplify@ WX[b, d, n]; \!\(\*OverscriptBox[\(p\), \(_\)]\) = Simplify@ \!\(\*OverscriptBox[\(WX\), \(_\)]\)[b, d, n];(*过BDN三点的圆的圆心*)
- (*复斜率定义:*) k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\));
- W1 = {e, \!\(\*OverscriptBox[\(e\), \(_\)]\)} /. Simplify@Solve[{(p - b) (\!\(\*OverscriptBox[\(p\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) == (p - e) (\!\(\*OverscriptBox[\(p\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\)), k[a, d] == k[a, e], e != d}, {e,
- \!\(\*OverscriptBox[\(e\), \(_\)]\)}] // Flatten ;
- e = Part[W1, 1]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Part[W1, 2];
- q = Simplify@ WX[e, d, c]; \!\(\*OverscriptBox[\(q\), \(_\)]\) = Simplify@ \!\(\*OverscriptBox[\(WX\), \(_\)]\)[e, d, c];(*过EDC三点的圆的圆心*)
- W2 = {f, \!\(\*OverscriptBox[\(f\), \(_\)]\)} /. Simplify@Solve[{(q - c) (\!\(\*OverscriptBox[\(q\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\)) == (q - f) (\!\(\*OverscriptBox[\(q\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)), k[a, c] == k[a, f], f != c}, {f, \!\(\*OverscriptBox[\(f\), \(_\)]\)}] // Flatten ;
- f = Part[W2, 1]; \!\(\*OverscriptBox[\(f\), \(_\)]\) = Part[W2, 2];
- Print["测试 MF = MC 是否成立:"];
- Simplify[(m - f) (\!\(\*OverscriptBox[\(m\), \(_\)]\) - \!\(\*OverscriptBox[\(f\), \(_\)]\)) == (m - c) (\!\(\*OverscriptBox[\(m\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\))]
- Print["测试 ME 是否为 \[Angle]FMN 的平分线:"];
- Simplify[k[m, e]^2 == k[m, f] k[m, n]]
复制代码 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|