|

楼主 |
发表于 2023-5-6 12:10
|
显示全部楼层
(1)+(2)="1", n=1,2,3,4,5,6,7,8,9,10:
(1),\(\displaystyle\bigg(\sum_{k=0}^{n-1}\frac{(k+n)!}{k!\ n!}(\frac{2}{5})^k+\frac{(2n)!}{n!\ n!}\frac{(3/5)^2(2/5)^{n}(3/5)^{n}}{(2/5)^2+(2/5)^2}\bigg)\bigg(\frac{3}{5}\bigg)^{n+1}\)
{9/13, 1161/1625, 29889/40625, 153333/203125, 19602081/25390625, 99969957/126953125,
978304149/1220703125, 24845595021/30517578125, 126001649601/152587890625,
15953735348541/19073486328125}
(2),\(\displaystyle\bigg(\sum_{k=0}^{n-1}\frac{(k+n)!}{k!\ n!}(\frac{3}{5})^k+\frac{(2n)!}{n!\ n!}\frac{(2/5)^2(3/5)^{n}(2/5)^{n}}{(3/5)^2+(3/5)^2}\bigg)\bigg(\frac{2}{5}\bigg)^{n+1}\)
{4/13, 464/1625, 10736/40625, 49792/203125, 5788544/25390625, 26983168/126953125,
242398976/1220703125, 5671983104/30517578125, 26586241024/152587890625,
3119750979584/19073486328125} |
|