|
好题!谢谢 ccmmjj !
\(求:GC=AE+EG,即:GC+CH+HG=2HE\)
\(方法一:GC=1,CH=\cos(2\alpha),HG=\sin(2\alpha)\)
\(已知:\frac{HE-1}{\sin(\alpha)}=\frac{HE-\sin(2\alpha)}{\cos(\alpha)},求:k=\frac{1+\cos(2\alpha)+\sin(2\alpha)}{2HE}=1\)
\(方法二:\frac{GC+CH+HG}{2HE}=\frac{(\cos(\alpha)-\sin(\alpha))+(\cos(\alpha)-\sin(\alpha))/\cos(2\alpha)+\sin(2\alpha)(\cos(\alpha)-\sin(\alpha))/\cos(2\alpha)}{2\cos(\alpha)}=1\)
方法三:...... |
|