|
本帖最后由 xiaoshuchong 于 2023-5-24 16:35 编辑
这个展开还挺有意思的,初步结果如下:
\begin{eqnarray}
f\left(x,m\right)&=&\frac{e^{x}+e^{-x}-2}{e^{\frac{x}{m}}+e^{-\frac{x}{m}}-2}\\&=&\sum_{n=0}^{\infty}\frac{a_{2n}(m)}{\left(2n+2\right)!m^{2n}}x^{2n}
\end{eqnarray}
其中
\begin{eqnarray}
a_{0}&=&2\\a_{2}&=&2m^{2}-2\\a_{4}&=&2m^{4}-5m^{2}+3\\a_{6}&=&2m^{6}-\frac{28m^{4}}{3}+14m^{2}-\frac{20}{3}\\a_{8}&=&2m^{8}-15m^{6}+42m^{4}-50m^{2}+21\\a_{10}&=&2m^{10}-22m^{8}+99m^{6}-220m^{4}+231m^{2}-90\\a_{12}&=&2m^{12}-\frac{91m^{10}}{3}+\frac{1001m^{8}}{5}-715m^{6}\\&&+\frac{7007m^{4}}{5}-1365m^{2}+\frac{7601}{15}\\a_{14}&=&2m^{14}-40m^{12}+364m^{10}-\frac{5720m^{8}}{3}\\&&+6006m^{6}-10920m^{4}+\frac{30404m^{2}}{3}-3640\\a_{16}&=&2m^{16}-51m^{14}+612m^{12}-4420m^{10}\\&&+\frac{102102m^{8}}{5}-59670m^{6}+\frac{516868m^{4}}{5}-92820m^{2}+32553
\end{eqnarray}
关于这些系数多项式有一些猜想,尚未能证明
\begin{eqnarray}
f\left(x,m\right)&=&\frac{e^{x}+e^{-x}-2}{e^{\frac{x}{m}}+e^{-\frac{x}{m}}-2}\\&=&\sum_{n=0}^{\infty}\frac{a_{2n}(m)}{\left(2n+2\right)!m^{2n}}x^{2n}\\&=&\sum_{n=0}^{\infty}\frac{\sum_{k=0}^{n}A_{n,k}m^{2n-2k}}{\left(2n+2\right)!m^{2n}}x^{2n}\\&=&\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\frac{\left(-1\right)^{k}g_{k}\left(\begin{array}{c}
2n+2\\
2k
\end{array}\right)}{\left(2n+2\right)!}m^{-2k}\right)x^{2n}
\end{eqnarray}
g_k是一个有理数数列,还没有弄明白其通项式
\begin{eqnarray}
g&=&\frac{1}{3},\frac{1}{5},\frac{5}{21},\frac{7}{15},\frac{15}{11},\frac{7601}{1365},\frac{91}{3},\frac{3617}{17},\frac{745739}{399},\frac{3317609}{165}\cdots
\end{eqnarray}
----------------------- 2023年5月24日16:33:20 更新 -----------------------------
该数列与bernoulli number有关,07年有一篇arxiv(0708.0809)介绍了该数列
|
|