|

楼主 |
发表于 2023-5-30 04:32
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-5-30 05:06 编辑
\begin{align*}
圆心到 新Q的距离 & =\sqrt{ 1,5 } sin\theta \\
\end{align*}
\( AREA \)
\( =\frac{d}{2} \bullet (单位圆上之动点,到 新Q的距离 \)
\( =\frac{1}{2} \bullet [ \frac{ 2 \sqrt{2} } { 1-3 cos^2\theta } ( \sqrt{ 1,5 } sin\theta-1 ), \frac{ 2 \sqrt{2} }{ 1-3 cos^2\theta } ( \sqrt{ 1,5 } sin\theta +1 ) ] \)
\( =\frac{1}{2} \bullet [ \frac{ 2 \sqrt{2} \bullet \frac{1}{\sqrt{2} } } { 1-3 cos^2\theta } ( \sqrt{ 3 } sin\theta-\sqrt{2} ), \frac{ 2 \sqrt{2} \bullet \frac{1}{\sqrt{2} } }{ 1-3 cos^2\theta } ( \sqrt{ 3 } sin\theta +\sqrt{2} ) ] \)
\( =\frac{1 }{ 3 sin^2-2 }[ \sqrt{ 3 } sin\theta-\sqrt{2}, \sqrt{ 3 } sin\theta +\sqrt{2} ] \)
\( =[\frac{1}{ \sqrt{ 3 } sin\theta +\sqrt{2} }, \frac{1}{ \sqrt{ 3 } sin\theta-\sqrt{2}} ] \)
\( When \qquad \theta=0^O, AREA \in [\frac{1}{\sqrt{2}} , +\infty] \)
\( When \qquad \theta=90^O, AREA \in [ \frac{1}{ \sqrt{3}+ \sqrt{2}} , \frac{1}{ \sqrt{3}- \sqrt{2}} ] \)
\( \Longrightarrow AREA \in [ \sqrt{3}- \sqrt{2} , +\infty) \)
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|