|

楼主 |
发表于 2023-6-20 01:47
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-6-20 03:03 编辑
\begin{align*}
已知: \Gamma: \frac{ x^2}{16}+ \frac{ y^2}{4}&=1\\
Set: the \qquad tangent \qquad point\\
A(x_A, y_A )\\
B(x_B, y_B )\\
\Longrightarrow \\
\begin{cases} AP: \frac{x_A \bullet x }{ 16 } + \frac{y_A \bullet y }{ 4 } =1 \\ BP: \frac{x_B \bullet x }{ 16 } + \frac{y_B \bullet y }{ 4 } =1 \end{cases}\\
Insert \qquad P(5,1) \qquad into \qquad them\\
\Longrightarrow \frac{5( x_B- x_A )}{16}+ \frac{y_B- y_A )}{4}&=0\\
y_B- y_A=-4 \bullet \frac{5( x_B- x_A )}{16}&=\frac{-5( x_B- x_A )}{4}\\
\Longrightarrow \frac{y_B- y_A }{x_B- x_A}&=-\frac{5}{4}
\frac{ 5 x}{16}+ \frac{ 1 \bullet y}{4}&=1\\
When y&=0\\
\Longrightarrow x=\frac{1 \bullet 16 }{5}=\frac{ 16 }{5}\\
\Longrightarrow P 之极线过点【\frac{ 16 }{5}, 0】
\end{align*} |
|