然后,当我们理清了问题的足够多的方面时,并且当我们认识到这种眼光最终帮助我们解决问题时,事情就会发生变化。例如,当我开始成为数学家时,在我所有的发现当中最让我感到震动的一件事就是(那是我在雅克·迪斯米埃的指导下准备博士论文时期),一个非交换代数随着时间在发生变化!我所证明的是,实际上,一个非交换代数都有一个随时间的演化,这个演化是完全典则的。更加准确地说,Tomita 理论所定义的演化依赖于某种态,实际上这种演化只是在模掉内自同构的意义上才依赖于这个态;这些内自同构是平凡的,不存在的。因此,这里所展示的,就是这种非交换性生成了时间【注:这里指的是孔涅的国家博士论文,其中他解决了冯·诺依曼代数理论中的第 III 型因子的分类问题。】!而且是从虚无当中生成的!如此简单!就是这样!当然,立刻由此得出的结果就是,一个代数会包含大量的不变量,例如它的周期,也就是说,使演化成为平凡所需的时间 t 。但是,尽管这些结果完全是可以公式化表达的和可以传达的,却并不会耗尽它们诗歌般的内容,也不会耗尽将最初的新发现付诸行动时的精彩之处。