数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2527|回复: 3

ABCD外切于⊙I,AIC∈⊙E,⊙E与BA,AD,BC,CD交于X,Y,Z,U,证 AD+DT+TX+XA=CD+DY+YZ+ZC

[复制链接]
发表于 2023-9-24 08:00 | 显示全部楼层 |阅读模式
四边形 ABCD 有内切圆 I,圆AIC = 圆E,X = BA∩圆E,Y = AD∩圆E,Z = BC∩圆E,T = CD∩圆E。
证明 AD + DT + TX + XA = CD + DY + YZ + ZC。(2021 - IMO - 4)

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
 楼主| 发表于 2023-9-24 13:34 | 显示全部楼层
本帖最后由 天山草 于 2023-9-24 17:58 编辑

添加辅助线以后的图:

程序图片:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-9-24 17:42 | 显示全部楼层
程序代码:
  1. Clear["Global`*"]; (*设B在坐标原点,C在1点, kAB=u^2,kA1C=1/v^2,kCA=w^2 *)
  2. \!\(\*OverscriptBox[\(b\), \(_\)]\) = b = 0; \!\(\*OverscriptBox[\(c\), \(_\)]\) = c = 1; a1 = (u^2 (v^2 - 1))/( u^2 v^2 - 1);
  3. \!\(\*OverscriptBox[\(a1\), \(_\)]\) = (v^2 - 1)/( u^2 v^2 - 1); Print["A1 = ", a1];
  4. kAB = u^2; kA1C = 1/v^2; kCA = w^2;i = (u (v - 1))/(u v - 1); \!\(\*OverscriptBox[\(i\), \(_\)]\) = (v - 1)/(u v - 1); Print["I = ", i];
  5. p = ((u + 1) (v - 1))/(2 u v - 2);  \!\(\*OverscriptBox[\(p\), \(_\)]\) = p; f = (u (u + 1) (v - 1))/( 2 u v - 2);  
  6. \!\(\*OverscriptBox[\(f\), \(_\)]\) = ((u + 1) (v - 1))/(2 u (u v - 1));
  7. Print["P = ", p]; Print["F = ", f];
  8. k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
  9. (*过A1点、复斜率等于k1的直线,与过A2点、复斜率等于k2的直线的交点:*)
  10. Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\)) - k1 (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
  11. \!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\) - (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
  12. Jx1[p_, a_, k_] := -k \!\(\*OverscriptBox[\(a\), \(_\)]\) + k \!\(\*OverscriptBox[\(p\), \(_\)]\) + a;  (*P点的镜线P1,镜线过点A且复斜率为k*)
  13. \!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[p_, a_, k_] := (k \!\(\*OverscriptBox[\(a\), \(_\)]\) - a + p)/k;
  14. a = Simplify@Jd[kCA, c, kAB, b]; \!\(\*OverscriptBox[\(a\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[kCA, c, kAB, b]; Print["A = ", a];
  15. p1 = Simplify@Jx1[p, i, k[c, i]]; \!\(\*OverscriptBox[\(p1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[p, i, k[c, i]]; Print["P1 = ", p1];
  16. f1 = Simplify@Jx1[f, i, k[a, i]]; \!\(\*OverscriptBox[\(f1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[f, i, k[a, i]]; Print["F1 = ", f1];
  17. d = Simplify@Jd[k[a, f1], f1, k[c, p1], p1]; \!\(\*OverscriptBox[\(d\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k[a, f1], f1, k[c, p1], p1]; Print["D = ", d];
  18. WX[a_, b_, c_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + b \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + c \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a) )/(\!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a));(*三角形 ABC 的外心坐标:*)   
  19. \!\(\*OverscriptBox[\(WX\), \(_\)]\)[a_, b_, c_] := (\!\(\*OverscriptBox[\(a\), \(_\)]\) \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) \!\(\*OverscriptBox[\(a\), \(_\)]\) (c - a))/(\!\(\*OverscriptBox[\(a\), \(_\)]\) (c - b) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (a - c) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (b - a));
  20. e = Simplify@WX[a, i, c]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(WX\), \(_\)]\)[a, i, c];
  21. Print["E = ", e];
  22. x = Simplify@Jx1[a, e, -k[a, b]]; \!\(\*OverscriptBox[\(x\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[a, e, -k[a, b]]; Print["X = ", x];
  23. y = Simplify@Jx1[a, e, -k[a, d]]; \!\(\*OverscriptBox[\(y\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[a, e, -k[a, d]]; Print["Y = ", y];
  24. z = Simplify@Jx1[c, e, -1]; \!\(\*OverscriptBox[\(z\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[c, e, -1]; Print["Z = ", z];
  25. t = Simplify@Jx1[c, e, -k[c, d]]; \!\(\*OverscriptBox[\(t\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jx1\), \(_\)]\)[c, e, -k[c, d]]; Print["T = ", t];
  26. AD = Simplify[Sqrt[(a - d) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]]; AD = ((1 - u) (v w^2 + u (v - 1) - 1) ((v - 1) w^2 + u (v w^2 - 1)))/((u^2 - w^2) (u v^2 w^2 + v^2 w^2 - 2 v w^2 + u - 2 u v + 1)); Print["AD = ", AD];
  27. TD = Simplify[Sqrt[(t - d) (\!\(\*OverscriptBox[\(t\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]]; TD = ((u - 1) (v - 1) (v (-v^2 w^2 + v w^2 + v - 1) w^4 - u ((w^4 + w^2) v^3 - 5 w^2 v^2 + 2 (w^2 + 1) v - 1) w^2 + u^2 (-(v - 2) v^2 w^4 + (2 v^2 - 5 v + 1) w^2 + 1) + u^3 (v^2 w^2 - v (w^2 + 1) + 1)))/((u v - 1) (u^2 - w^2) (v w^2 - 1) (u v^2 w^2 + v^2 w^2 - 2 v w^2 + u - 2 u v + 1)); Print["TD = ", TD];
  28. XT = Simplify[Sqrt[(x - t) (\!\(\*OverscriptBox[\(x\), \(_\)]\) - \!\(\*OverscriptBox[\(t\), \(_\)]\))]]; XT = ((1 - u) (v - 1) w (w^2 +     u))/((u^2 - w^2) (v w^2 - 1)); Print["XT = ", XT];
  29. XA = Simplify[Sqrt[(x - a) (\!\(\*OverscriptBox[\(x\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\))]]; XA = ((u - 1) ((v - 1) v w^4 +
  30.      u (v w^2 - 1)^2 - u^2 (v - 1)))/((u v - 1) (u^2 - w^2) (v w^2 - 1)); Print["XA = ", XA];
  31. ZC = Simplify[Sqrt[(z - c) (\!\(\*OverscriptBox[\(z\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\))]]; ZC = (u (v - 1) (w^2 - 1) (u - v w^2))/((u v - 1) (u^2 - w^2) (v w^2 - 1)) - 1; Print["ZC = ", ZC];
  32. YZ = Simplify[Sqrt[(y - z) (\!\(\*OverscriptBox[\(y\), \(_\)]\) - \!\(\*OverscriptBox[\(z\), \(_\)]\))]]; YZ = ((1 - u) (v - 1) w (w^2 +
  33.      u))/((u^2 - w^2) (v w^2 - 1)); Print["YZ = ", YZ];
  34. DY = Simplify[Sqrt[(d - y) (\!\(\*OverscriptBox[\(d\), \(_\)]\) - \!\(\*OverscriptBox[\(y\), \(_\)]\))]]; DY = ((1 - u) (v - 1) v (w^2 - 1) (u - v w^2))/((u v - 1) (v w^2 - 1) (u v^2 w^2 + v^2 w^2 - 2 v w^2 + u - 2 u v + 1)); Print["DY = ", DY];
  35. CD = Simplify[Sqrt[(c - d) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]]; CD = ((u - 1) v (w^2 - 1))/(
  36. u v^2 w^2 + v^2 w^2 - 2 v w^2 + u - 2 u v + 1); Print["CD = ", CD];
  37. L1 = Simplify[AD + TD + XT + XA]; Print["AD+TD+XT+XA = ", L1];
  38. L2 = Simplify[CD + DY + YZ + ZC]; Print["CD+DY+YZ+ZC = ", L2];
  39. Print["因此 AD+TD+XT+XA = CD+DY+YZ+ZC"];
复制代码
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-9-24 18:03 | 显示全部楼层
此题很有趣,那么多的点和线段长度,点的坐标表达式和长度表达式,竟然都是有理式表达!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-11 20:11 , Processed in 0.084936 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表