将3,4,5,6,…,n排成数列{a(k):k=1,2,3,4,5,…,n-2},使a(k)都是k的倍数,有几种排法?
a(03)=b(01)*b(03)=1,{3},
a(04)=b(03)*b(02)=1,{3,4},
a(05)=b(02)*b(05)=1,{5,4,3},
a(06)=b(05)*b(03)=1,{5,6,3,4},
a(07)=b(03)*b(07)=1,{7,6,3,4,5},
a(08)=b(07)*b(04)=2,{7,4,3,8,5,6},{7,8,3,4,5,6},
a(09)=b(04)*b(09)=4,{3,4,8,9,5,6,7},{3,8,9,4,5,6,7},{9,4,3,8,5,6,7}{9,8,3,4,5,6,7},
a(10)=b(09)*b(05)=2,{3,10,9,4,5,6,7,8},{9,10,3,4,5,6,7,8},
a(11)=b(05)*b(11)=1,{11,10,3,4,5,6,7,8,9},
a(12)=b(11)*b(06)=3,{11,4,3,12,5,6,7,8,9,10},{11,6,3,4,5,12,7,8,9,10},{11,12,3,4,5,6,7,8,9,10},
a(13)=b(06)*b(13)=3,{13,4,3,12,5,6,7,8,9,10,11},{13,6,3,4,5,12,7,8,9,10,11},{13,12,3,4,5,6,7,8,9,10,11},
a(14)=b(13)*b(07)=1,{13,14,3,4,5,6,7,8,9,10,11,12},
......
Table[Total[1/Divisors[n]]; {b[Floor[n/2]]*b[2 Floor[n/2] - Cos[n*Pi]]}, {n,3, 210}]
{1, 1, 1, 1, 1, 2, 4, 2, 1, 3, 3, 1, 3, 12, 4, 2, 2, 3, 9, 3, 1, 8, 16, 2, 4, 12, 3, 3, 3, 8, 24, 3, 3, 24, 8,
1, 3, 24, 8, 3, 3, 3, 24, 8, 1, 20, 40, 4, 6, 9, 3, 4, 12, 24, 24, 3, 1, 13, 13, 1, 8, 128, 48, 9, 3, 3,
9, 9, 3, 26, 26, 1, 8, 24, 9, 9, 3, 20, 160, 8, 1, 13, 39, 3, 3, 24, 8, 8, 24, 9, 9, 3, 3, 144, 48, 2, 16,
64, 8, 3, 3, 8, 104, 13, 1, 20, 20, 3, 9, 60, 20, 3, 9, 9, 24, 8, 3, 132, 88, 2, 3, 9, 12, 32, 8, 32, 96,
9, 3, 13, 39, 3, 20,160, 8, 3, 3, 13, 39, 3, 3, 228, 228, 3, 8, 24, 3, 8, 8, 8, 64, 24, 9, 39, 13, 1, 3,
144, 144, 24, 8, 3, 39, 13, 1, 44, 88, 6, 24, 24, 3, 3, 24, 160, 60, 3, 1, 44, 44, 3, 9, 24, 24, 9, 9,
9, 60, 60, 3, 112, 112, 1, 13, 104, 8, 8, 8, 26, 78, 3, 3, 39, 39, 3, 8, 160, 60, 39}
譬如:
a(210)=b(210/2)*b(209)=b(3*5*7)*b(11*19)=13*3=39,
a(1155)=b((1155-1)/2)*b(1155)=b(577)*b(3*5*7*11)=1*75=75,
a(3*5*5*7*7*7*11*11)=b((3*5*5*7*7*7*11*11 - 1)/2)*b(3*5*5*7*7*7*11*11)
=b(2351*331*2/2)*b(3*5*5*7*7*7*11*11)=13*34516=448708, |