数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3034|回复: 0

提出一种冰雹猜想的证明思路,并给出他的推广。

[复制链接]
发表于 2023-10-27 13:43 | 显示全部楼层 |阅读模式
给出任意一个正整数N,如果这个数是奇数,那么进行3N+1的计算,如果是偶数,则进行N/2的计算,最后它都会陷入到一个“4、2、1”的循环之中。
我发现,因为任意整数都能表示为二进制的形式,所以这个猜想可以等价于当一个二进制数的未位数为1(即为奇数),则对其进行×11+1的运算,若末位数为0(即为偶数),则进入÷10的计算,最终会陷入100,10,1的循环。
于是我猜想,对于任意进制都应有这种规律。如下:

对于任意一个N进制数
        末位数为          运算方法
         0                        ÷10
         1                        ×11+N-1
         2                        ×11+N-2
         .
         .
         .
        N-1                    ×11+N-(N-1)
那么这个数必将进入一个循环 1,20,2,30,3,...,10(N-1),N-1,10N,N,1,...

希望各位可以以这个方式思考一下。

                                                                                                                                                                                                                        思考funny
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 02:50 , Processed in 0.077917 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表