|
\(设L_n=\frac{\left( 1+\sqrt{2}\right)^n+\left( 1-\sqrt{2}\right)\ ^n}{2}=1{,}3{,}7{,}17{,}41{,}99{,}239.577{,}\cdots\cdots.\)
求证:\(L_n\times L_{n+1}\times L_{n+2}\times L_{n+3}+4=\ 完全平方数。\)
\(则1\times3\times7\times17+4=19^2\)
\(则3\times7\times17\times41+4=121^2\)
\(L_n\times L_{n+1}\times L_{n+2}\times L_{n+3}+4=\left\{ L_n\times L_{n+1}+\left( L_{n+2}-L_{n+1}\right)^2\right\}^2\)
|
|