|
易知\[ a_n是以\{\sqrt{2}+1,-\frac{1}{\sqrt{2}},2-\sqrt{2}\}\]为周期的序列
设挑出的100中,三项分别有\[x,y,z\]个,则有:
\[x(\sqrt{2}+1)+y(-\frac{1}{\sqrt{2}})+z(2-\sqrt{2})=90-20\sqrt2\]
即 \[x + y + z = 100, x + 2 z = 90, x - y/2 - z = -20\]
解得:
\[x=30,y=40,z=30\]
故此100项之乘积为:
\[(\sqrt{2}+1)^{30}*(-\frac{1}{\sqrt{2}})^{40}*(2-\sqrt{2})^{30}=\frac{1}{32}\]
|
|