|
复幂函数 \(i^i=e^{i\log i}\)
复对数 \(\log i=\log\left| i\right|+i\left( \arg i+2k\pi\right)\ {,}\ k=0{,}\pm1{,}\pm2...\)
取 \(k=0\),\(\log i=\log\left| i\right|+i\arg i=i\frac{\pi}{2}\)
\(\therefore i^i=e^{i\cdot i\frac{\pi}{2}}=e^{-\frac{\pi}{2}}\approx0.20787957635076193\) |
|