|
本帖最后由 王守恩 于 2023-12-26 04:18 编辑
无理数α∈(0,1)都可以有解。只要把\(\sqrt{1/2}\) 换一下就可以。
1,算式复杂了,思路慢慢还是可以看出来的。
- Table[Solve[{Floor[1/α] == a1,
- Floor[Floor[-1/(α - a1^-1)]*1/a1] == a2,
- Floor[Floor[1/(α - a1^-1 + (a1*a2)^-1)]*1/(a1*a2)] == a3,
- Floor[Floor[-1/(α - a1^-1 + (a1*a2)^-1 - (a1*a2*a3)^-1)]*1/(a1*a2*a3)] == a4,
- Floor[Floor[1/(α - a1 + (a1*a2)^-1 - (a1*a2*a3)^-1
- +(a1*a2*a3*a4)^-1)]*1/(a1*a2*a3*a4)]==a5,
- Floor[Floor[-1/(α - a1 + (a1*a2)^-1 - (a1*a2*a3)^-1
- +(a1*a2*a3*a4)^-1 - (a1*a2*a3*a4*a5)^-1)]*1/(a1*a2*a3*a4*a5)]==a6,
- Floor[Floor[1/(α - a1 + (a1*a2)^-1 - (a1*a2*a3)^-1 + (a1*a2*a3*a4)^-1
- -(a1*a2*a3*a4*a5)^-1+(a1*a2*a3*a4*a5*a6)^-1)]*1/(a1*a2*a3*a4*a5*a6)]==a7},
- {a1, a2, a3, a4, a5, a6, a7, a8}], {α, Sqrt[1/2], Sqrt[1/2]}]
复制代码
{{{a1 -> 1, a2 -> 3, a3 -> 8, a4 -> 33, a5 -> 35, a6 -> 39201, a7 -> 39203, a8 -> 60245508192801}}}
2,算式可以简单一点。
- PierceExp[A_, n_] := Join[Array[1 &, Floor[A]],
- First@Transpose@NestList[{Floor[Expand[1 - #[[1]] #[[2]]]^-1],
- Expand[1 - #[[1]] #[[2]]]} &, {Floor[(A - Floor[A])^-1],
- A - Floor[A]}, n - 1]]; PierceExp[N[Sqrt[1/2], 6!], 11]
复制代码
{1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803,
218662352649181293830957829984632156775201,
218662352649181293830957829984632156775203} |
|