这应该是 "显然" 的结论呀!诸位!分享分享你的想法。譬如:
\(四,(1+x+x^2+x^3+x^4)^n=(\frac{1-x^5}{1-x})^n=a_{0}+a_{1}x+a_{2}x^2+a_{3}x^3+\cdots+a_{4n}x^{4n}=5^n\)
\(S(0)=a_{0}+a_{5}+a_{10}+a_{15}+a_{20}+a_{25}+\cdots=\frac{5^n}{5}\)
\(S(1)=a_{1}+a_{6}+a_{11}+a_{16}+a_{21}+a_{26}+\cdots=\frac{5^n}{5}\)
\(S(2)=a_{2}+a_{7}+a_{12}+a_{17}+a_{22}+a_{27}+\cdots=\frac{5^n}{5}\)
\(S(3)=a_{3}+a_{8}+a_{13}+a_{18}+a_{23}+a_{28}+\cdots=\frac{5^n}{5}\)
\(S(4)=a_{4}+a_{9}+a_{14}+a_{19}+a_{24}+a_{29}+\cdots=\frac{5^n}{5}\)
1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 4, 3, 2, 1,
1, 3, 6, 10, 15, 18, 19, 18, 15, 10, 6, 3, 1,
1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1,
1, 5, 15, 35, 70, 121, 185, 255, 320, 365, 381, 365, 320, 255, 185, 121, 70, 35, 15, 5, 1,
1,6,21,56,126,246,426,666,951,1246,1506,1686,1751,1686,1506,1246,951,666,426,246,126,56,21,6,1,
......
如果我们只是把每串最大的数特别地列出来。OEIS--A324595-- 2024 年 1 月 15 日
1, 5, 19, 85, 381, 1751, 8135, 38173, 180415, 857695, 4096830, 19645975, 94523729, 456079769,
2206005414, 10693086637, 51930129399, 252617434619, 1230714593340, 6003931991895, ......
- Table[SeriesCoefficient[(-1+QPochhammer[-1,Sqrt[x]]/2)^n,{x,0,n}],{n,0,25}]
复制代码 |