|
将过\(\small B\)的平面\(\Pi\)法线参数式\(\small(x,y,z)=(0,1,2)+t(1,2,2)\)代入\(\Pi:\)
\(\small (t+2(2t+1)+2(2t+2)=15,\,t=1.\;\therefore\;\small (B+C)/2=(1,3,4)\)
\(\small|BC|=6.\;\;\sin\small\angle (\overline{AB},\overline{BC})=\large\frac{|(2,1,1)\times(1,2,2)|}{|(2,1,1)||(1,2,2)|}=\frac{1}{\sqrt{3}}.\) 最后得
\(\small|\triangle ABC|=\frac{1}{2}|AB||BC|/\sqrt{3}=36/\sqrt{3}=12\sqrt{3}.\) |
|