|
本帖最后由 小草 于 2024-5-5 02:37 编辑
表孪生素数对数T(10^n)则(C1^k)*10^n/ln^2(10^n)<T(10^n)<
(C1^k+1)*10^n/ln^2(10^n),k是正整数
文/施承忠
因为C1*x/lnx=π(x),C2*π(x)/lnx=T(x),C*x/ln^2(x)=T(x),因为C1>C2,所以C2≈C1^s*,(s*是正实数),C1^s=C.(s是正实数).所以存在C1^m<C<C1^m+1.
表孪生素数对数T(10^n)则(C1^k)*10^n/ln^2(10^n)<T(10^n)<
(C1^k+1)*10^n/ln^2(10^n),k是正整数
(1.1512925464970228420089957273422^3)*10^2/ln^2(10^2)=
0.71955784156063927625562232958889
T(10^2)=8
(1.1512925464970228420089957273422^4)*10^2/ln^2(10^2)=
8.2842157976224968915026037321788
(1.160502886868999024745067693161^3)*10^3/ln^2(10^3)=
32.754033478990628474404790571782
T(10^3)=35
(1.160502886868999024745067693161^4)*10^3/ln^2(10^3)=
38.011150408972467861210689406091
(1.1319508317158728582632445991228^4)*10^4/ln^2(10^4)=
193.53472138818782508591048421128
T(10^4)=205
(1.1319508317158728582632445991228^5)*10^4/ln^2(10^4)=
219.0717888412589363634217349278
(1.1043198105999443100550287016666^4)*10^/ln^2(10^5)=
1122.0392944746746807116439946672
T(10^5)=1224
(1.1043198105999443100550287016666^5)*10^/ln^2(10^5)=
1239.0902211599678835935332403664
(1.0844899477790795886242657592589^5)*10^6/ln^2(10^6)=
7859.4793303069015205175022997425
T(10^6)=8169
(1.0844899477790795886242657592589^6)*10^6/ln^2(10^6)=
8523.5263284952870471766660632951
(1.0711747889618229206472949200739^6)*10^7/ln^2(10^7)=
58147.975436763869463720066296406
T(10^7)=58980
(1.0711747889618229206472949200739^7)*10^7/ln^2(10^7)=
62286.645317032800843175405097292
(1.0612992317564807581131101565239^6)*10^8/ln^2(10^8)=
421129.58055039669414479517920099
T(10^8)=440312
(1.0612992317564807581131101565239^7)*10^8/ln^2(10^8)=
446944.50030806499259943350749876
(1.0537269642351710974409226939339^7)*10^9/ln^2(10^9)=
3358769.9452715615753372602709288
T(10^9)=3424506
(1.0537269642351710974409226939339^8)*10^9/ln^2(10^9)=
3539226.4579953343484002895325122
(1.0477971283581089965610995806307^8)*10^10/ln^2(10^10)=
27402251.848895606725084617731966
T(10^10)=27412679
(1.0477971283581089965610995806307^9)*10^10/ln^2(10^10)=
28712000.797818499611483689470413
(1.0430388787000800650353383577411^8)*10^11`/ln^2(10^11)=
218367110.194087858020268401527
T(10^11)=224376048
(1.0430388787000800650353383577411^9)*10^11/ln^2(10^11)=
227765385.761818222369139980105
(1.0391450110953410193890550162821^9)*10^12/ln^2(10^12)=
1850510453.4686406686783333896729
T(10^12)=1870585220
(1.0391450110953410193890550162821^10)*10^12/ln^2(10^12)=
1922948705.7017151488325967661743
(1.0358989502218021047112303278898^9)*10^13/ln^2(10^13)=
15329869386.365554436961147666783
T(10^13)=15834664872
(1.0358989502218021047112303278898^10)*10^13/ln^2(10^13)=
15880195604.373419452260030976233
(1.0331511539035291862176910483981^10)*10^14/ln^2(10^14)=
133337160436.57249840706102984945
T(10^14)=135780321665
(1.0331511539035291862176910483981^11)*10^14/ln^2(10^14)=
137757441163.26487615917982669191
(1.0307949444307296700585968367039^11)*10^15/ln^2(10^15)=
1170256826198.6300717242873080371
T(10^15)=1177209242304
(1.0307949444307296700585968367039^12)*10^15/ln^2(10^15)=
1206294820131.0989542921093525203
(1.0287520663313651823411474364617^11)*10^16/ln^2(10^16)=
10063442817547.270133399707048213
T(10^16)=10304195696798
(1.0287520663313651823411474364617^12)*10^16/ln^2(10^16)=
10352787592959.289766611305910187
(1.026963812311519265191973032908^12)*10^17/ln^2(10^17)=
89811606435813.880673821437494298
T(10^17)=90948889353159
(1.026963812311519265191973032908^13)*10^17/ln^2(10^17)=
92233269735145.201861896208318594
(1.0253852989975120928002258276784^13)*10^18/ln^2(10^18)=
806409692013960.95485181968404105
T(10^18)=808675888577435
(1.0253852989975120928002258276784^14)*10^/ln^2(10^18)=
826880643160226.99338632942108303
|
|