数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\textbf{的最简解读}\)

[复制链接]
发表于 2024-6-25 07:29 | 显示全部楼层
elim 发表于 2024-6-24 20:44
\((1)\;\;(N_{\infty}\subset A_m)\iff (N_{\infty}\cap A_m^c=\varnothing)\;(\forall m\in\mathbb{N})\)
...


恭喜青楼学派掌门人,你成功地证明了你所给的单减集合列根本就不存在,按你的“臭便”思维,\(\forall m∈N\)恒有\(A_1=A_1\cap N=A_1\cap\displaystyle\bigcup_{m=1}^∞ A_m^c=\displaystyle\bigcup_{m=1}^∞ (A_1\cap A_m^c)=\phi\)。\(A_1=\phi\)的单减集合列存在吗?原来长达半年地忙活,居然是e大掌门人的骗局!真是可悲、可叹、可耻、可恶!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-6-25 08:40 | 显示全部楼层
\((0)\;\;A_m:=\{k\in\mathbb{N}: k> m\},\;N_{\infty}:=\displaystyle\bigcap_{n=1}^\infty A_n.\)
\((1)\;\;(N_{\infty}\subset A_m)\iff (N_{\infty}\cap A_m^c=\varnothing)\;(\forall m\in\mathbb{N})\)
\((2)\;\;(m\in A_m^c\subset\displaystyle\bigcup_{n=1}^\infty A_n^c\subset\mathbb{N}\;(\forall m\in\mathbb{N}))\implies (\mathbb{N}=\bigcup_{n=1}^\infty A_n^c)\)
\(\therefore\;\;N_{\infty}=N_{\infty}\cap\mathbb{N}\overset{(2)}{=}\displaystyle N_{\infty}\cap\bigcup_{n=1}^\infty A_n^c=\bigcup_{n=1}^\infty(N_{\infty}\cap A_n^c)\overset{(1)}{=}\bigcup_{n =1}^\infty\varnothing=\varnothing\)

为什么孬种算不出\(N_{\infty}\)? 答: 种太
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-14 01:22 , Processed in 0.074201 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表