|
\(定义序列\ \ a(n+1)=a(n)+\big(\frac{a(n)}{n}\big)^2\)
\(1, a(1)=0,\)
\(a(2)=0+\big(\frac{0}{1}\big)^2=0,\)
\(a(3)=0+\big(\frac{0}{2}\big)^2=0,\)
\(a(4)=0+\big(\frac{0}{3}\big)^2=0,\)
\(a(5)=0+\big(\frac{0}{4}\big)^2=0,\)
\(a(6)=0+\big(\frac{0}{5}\big)^2=0,\)
得到一串数:0,0,0,0,0,0,0,0,0,......
\(2, a(1)=p,0≤p<1.\)
\(a(2)=p+\big(\frac{p}{1}\big)^2=p+p^2<p+p=2p<2,\)
\(a(3)=2p+\big(\frac{2p}{2}\big)^2=2p+p^2<2p+p=3p<3,\)
\(a(4)=3p+\big(\frac{3p}{3}\big)^2=3p+p^2<3p+p=4p<4,\)
\(a(5)=4p+\big(\frac{4p}{4}\big)^2=4p+p^2<4p+p=5p<5,\)
\(a(6)=5p+\big(\frac{5p}{5}\big)^2=5p+p^2<5p+p=6p<6,\)
\(3, a(1)=1,\)
\(a(2)=1+\big(\frac{1}{1}\big)^2=2,\)
\(a(3)=2+\big(\frac{2}{2}\big)^2=3,\)
\(a(4)=3+\big(\frac{3}{3}\big)^2=4,\)
\(a(5)=4+\big(\frac{4}{4}\big)^2=5,\)
\(a(6)=5+\big(\frac{5}{5}\big)^2=6,\)
得到一串数:1,2,3,4,5,6,7,8,9,......
\( 综合1, 2, 3可知: 0≤a(n)<n.\) |
|