|
本帖最后由 春风晚霞 于 2024-7-13 15:48 编辑
回eilm先生,最近你发表的两大证明\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\} =\phi\)\(\color{red}{都是错误的!}\)
无论是利用周民强《实变函数论》第一章定义1.8还是定义1.9求集合列的极限集,结果都只与待求极限集的集列通项有关,与其它手段无关。
1、e氏根据周翁《实变函数论》P9页例5\(\displaystyle\lim_{n \to \infty}[n,∞)=\phi\)\(\Rightarrow\)\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\color{red}{\subseteq}\(\displaystyle\lim_{n \to \infty}[n,∞)=\phi\),事实上\(\forall\(\displaystyle\lim_{n \to \infty}(n+j)\; \;j∈N\)\(∈\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\)\(\nRightarrow\)\(\(\displaystyle\lim_{n \to \infty}(n+j)∈[n,∞)\),从康托尔有穷基数的无穷序列知,\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}\(\subset\)(∞,2∞),所以用\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\subsete [n,∞)\color{red}{绝对错误的!}\)
2、elim在主题《\(\underset{n\to\infty}{\overline{\lim}}\{n+1,n+2,…\}=\phi\)》主题主帖根据周民强《实变函数论》P9页定义1.9“证明”
\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}=\phi\),2楼又特别指出【当集列\(\{A_n\}\)单降时,\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcap_{n =1}^\infty}A_n\)(也就同页定义1.8),看来elim并不反对用周氏定义1.8证得\(\displaystyle\bigcap_{n=1}^\infty A_n=\{k+1,k+2,…\}\)而是反对\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)!确定\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}\)空还是不空的关键在于\(\nu=\displaystyle\lim_{n \to \infty}n\)是否存在?若\(\nu\)不存在,那么它的前趋\(\nu\)-1亦不存在;\(\nu\)-1的前趋\(\nu\)-2亦存在……直至3、2、1这些常见的自然数也不存在。于是自然数集\(N=\phi\)这显然有背常理,故此\(\nu\)客观存在。由\(\nu\)的存在性,它的后继\(\nu\)+1相应存在,\(\nu\)+1的后继\(\nu\)+2也相继存在……直至2\(\nu\)也相继存在,所以数集(∞,2∞)
≠\(\pji\)所以\(\displaystyle\lim_{n \to \infty}\{n+1,n+2,…\}≠\phi\)
另外,elim先生在该主帖下elim在主题《\(\underset{n\to\infty}{\overline{\lim}}\{n+1,n+2,…\}=\phi\)》主题下【取 \(A_n=\{n+1,n+2,\ldots\}\;(n\in\mathbb{N})\)
因为对每个\(m\in\mathbb{N},\;m\not\in A_n\,(n\ge m)\), 即属于无穷多个\(A_n\)
的自然数不存在,即 \(\underset{n\to\infty}{\underline{\lim}}A_n\subseteq\underset{n\to\infty}{\overline{\lim}} \{n+1,n+2,\ldots\}=\varnothing.\)
所以 \(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}=\varnothing.\)】的这段演译仍然是【无穷交就是一种骤变】再版。其\(\color{red}{错误原因}\)依然是无视\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)这一事实。由于集合列列\(\{A_k\}\)单调递减,所以集合列\(\{A_k^c\}\)单调递增。根据周氏定义1.8,我们立得\(\displaystyle\bigcup_{n=1}^ \infty A_n^c=\{k+1,k+2,…\}^c\);所以\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)!
我真不明白,为什么我步步依据《实变函数论》或集合论运算规律证明得\(\displaystyle\lim_{n \to \infty}\{k+1,k+2,…\}≠\phi\)在你眼里却成了“反对数学,反对周民强《实变函数论》的孬种或种孬”?elim先生你每天在10多点名骂我的主题下发帖我,难道还下允许我还击吗?这样还有天良吗?是的我在每天回你的上百个帖子里也骂了你,你就感到很是不爽。哪你天天骂我,我会感到很爽吗?当然你比那个落水狗婊子文明得多,虽然须眉之气少了一些,但毕竟还算得业界翘楚嘛! |
|