|

楼主 |
发表于 2024-7-9 10:28
|
显示全部楼层
一段历史和一个思想实验:第谷机器
启蒙运动后的思潮在理性主义和经验主义之间一拨一拨地迭代演进。科学亦如此。哥白尼毫无疑问是理性主义者,他的工具是数学。之后的开普勒也是理性主义者。但他们之间的第谷布拉赫却是彻头彻尾的经验主义者,他的工具是自制的各种测量仪器,他那时还没有望远镜。其身后留下 24 本观测数据,其中包含 777 颗恒星的星表。这批数据被开普勒继承。濒死的贵族第谷布拉赫已经和小肚鸡肠的开普勒几乎闹翻了。这段历史的简化版就是:哥白尼推翻了托勒密的地心说,代之以更简单的日心说。但第谷布拉赫并没有走得那么远,按照剑桥科学史家霍斯金的说法:第谷在哥白尼创新的地方保守,而在哥白尼保守的地方创新。他提出了准日心说:所有行星都绕着太阳转,但太阳带着行星们围着地球转。开普勒修正了第谷的工作,提出了行星运动三定律,工具就是数学。开普勒的工作得到伽利略的肯定。伽利略又是一个经验主义者,他有了更新的工具:望远镜。1609 年,开普勒在《新天文学》中首先发表头两条定律的时候,伽利略刚造出 3 倍的望远镜。
第谷布拉赫自制的观测设备,按今天的标准看,都是些简陋的玩具。但,我们假设他除了那些设备之外,还有一台现代的先进的机器学习装备。为了方便,我们暂且称之为第谷机,这台学习机可以实现今天的深度学习和强化学习等各种机器学习算法。他可以把他那 24 大本记录数据喂给这台第谷机对之加以训练,训练好的第谷机就可以输出任意一个恒星和行星的轨道数据。若如此,日心说还是地心说还重要吗?反正第谷机能输出我们需要的数据。第谷机的表现,当时的人肯定难以解释,估计会称之为“涌现”。那我们可以说这个第谷机完成的功能是科学吗?它的行为可以解释吗?必须列出方程才能称之为解释吗?多么简单的方程才能称之为解释?这甚至可以影响我们做科学的方式,按照第谷机的机制,我们只是负责不停地收集数据,然后喂给机器,不断完善预测机制。如果牛顿之前就有了深度学习,那么是不是就不会有牛顿定律乃至相对论了?只有数值解而没有解析解的方程所描述的世界就不能被理解吗?不受限制的三体问题不能算被理解吗?
尾声
阿诺德除了对数学的技术内容做出深刻贡献,对数学哲学和数学史也有很多有趣的论断。他曾说:数学就是物理学中那些实验成本很低的部分(Mathematics is the part of physics where experiments are cheap)。我们也可以套用此话说,计算科学其实才是物理学中实验成本很低的部分。我们可以问:人类能够学习的东西比理性更多、更少还是一样?通用逼近定理似乎指向理性不会比可学习的更多。我们可以更加深入地探讨 KA 叠加定理的哲学蕴意。
阿诺德在接受采访时说:“布尔巴基学派(Bourbakists)声称所有伟大的数学家——用狄利克雷(Peter Gustav Lejeune Dirichlet)的话来讲——是‘用清晰的思想代替盲目的计算’。布尔巴基宣言中的这句话,翻译成俄语变成了‘用盲目的计算代替清晰的思想’,宣言的译审是柯尔莫哥洛夫,他精通法语。我发现这一错误后大吃一惊,就去找柯尔莫哥洛夫讨论。他答道:我不觉得翻译有什么问题,翻译把布尔巴基风格描述得比他们自己说的更准确。遗憾的是,庞加莱(Henri Poincaré)没在法国创建一个学派。”苏联数学家的毒舌和幽默别具一格。
当休谟说牛顿发现了物的定律时,他本意是想把牛顿拉到经验主义的阵营。但牛顿摒弃了机械论。我们力图说丘奇-图灵论题为心的定律(实际上是“论题”)。我们对人工智能的可解释性要求是基于机械论的。可解释性的目的是在法庭上给老百姓(average person)解释,而不是在最聪明的精英化之间形成共识。过去,科学的可解释性,是科学成功的标志。还原论(reductionist),作为现代科学的传统,就是把一个难解的大问题还原为更小的、更原始且更易解释的小问题。机械论就是把所有运动都还原为某种碰撞,万有引力不需要碰撞,在机械论的角度就是不可解释的。而大模型则是把一堆以前不知是不是可解的小问题堆在一起打包解决,当整体问题被解决后,里面的小问题就不被人们认为是重要了。
我们可以说理性主义是“清晰的思想”,而黑盒子是“盲目的计算”。但物理定律一定比黑盒子更加经济吗?常说飞机不是学鸟,而是依靠流体力学,那是因为制造超级大鸟的成本太高。如果造鸟的成本低于求解流体力学方程,造鸟也许不是一个很坏的选择。Max Tegmark 等试图用符号回归(symbolic regression)从数据中找出物理定律(Undrescu & Tegmark)。他的数据集之一是费曼《物理学讲义》中列出的公式。如果我们把学习看作是压缩,“盲目计算”有时可能比“清晰思想”(如符号回归或解析解)的压缩比更高。科学问题在某种意义上成了经济学问题。也正是在这个意义上,计算机科学比物理学更加接近第一性原理,物理学不过是计算机科学的符号回归。
作者简介:
尼克,乌镇智库理事长。曾获吴文俊人工智能科技进步奖。中文著作包括《人工智能简史》《理解图灵》《UNIX内核剖析》和《哲学评书》等。
参考文献:
[1] Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., ... & Tegmark, M. (2024). KAN: Kolmogorov-Arnold Networks. arXiv preprint arXiv:2404.19756.
[2] Cucker, F. & Smale, S. (2001), On the Mathematical Foundations of Learning, BULLETIN OF THE AMS, Volume 39, Number 1, Pages 1–49
[3] Cybenko, G. (1988), Continuous Valued Neural Networks with Two Hidden Layers are Sufficient, Technical Report, Department of Computer Science, Tufts University.
原创 尼克 赛先生 2024 年 05 月 10 日 17:20 广东 |
|