数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 612|回复: 4

\(\LARGE{\color{red}{再论N_∞=\phi 反数学}}\)

[复制链接]
发表于 2024-9-1 16:58 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2024-9-1 17:02 编辑


elim认为据周民强【实变函数论】p5 集族交定义,定义 1.8,1.9,以及 p10  知道
1、【\(N_{\infty}=\displaystyle\lim_{n\to\infty}\mathbb{N}\cap[n+1,\infty)=\lim_{n\to\infty}[n,\infty)=\varnothing\)】这是对周民强先生的亵渎,并且是\(\color{red}{绝对错误的}
\)\(\because\quad\displaystyle\lim_{k→∞}\{k+1,k+2,…,\}=\{∞+1,∞+2,…\}\)\(\nsubseteq\{\displaystyle\lim_{k→∞}1,\displaystyle\lim_{k→∞}2,…,\}\)\(=\displaystyle\lim_{k→∞}\mathbb{N}^+\)即\(\displaystyle\lim_{k→∞} A_k\nsubseteq(\displaystyle\lim_{k→∞}\mathbb{N}且[n+1,∞)\)\(\therefore\quad N_∞≠\phi\)
还有如下具体的例子,单减集列\(\{\mathscr{A}_n=\{x:x=2n,n∈N\}\);\(\{\mathscr{B}_n=\{x:x=2n+1,n∈N\}\);\(\{\mathscr{C}_n=\{x:x=cos2nπ,n∈N\}\).根据据周民强【实变函数论】定义 1.8,1.9不难证得\(N_∞=\displaystyle\lim_{k→∞} \mathscr{A}_n=∞≠\phi\);\(N_∞=\displaystyle\lim_{k→∞} \mathscr{B}_n=∞≠\phi\);\(N_∞=\displaystyle\lim_{k→∞} \mathscr{C}_n=\{1\}≠\phi\)!
2、elim还认为【并且
\(H_{\infty}=\displaystyle\lim_{n\to\infty}(\mathbb{N}-A_n^c)=\mathbb{N}-\lim_{n\to\infty}\{m\in\mathbb{N}: m\le n\}=\mathbb{N}-\mathbb{N}=\phi\)
所以\(N_{\infty}\ne\phi\)】
elim的这个“并且”,才是被老夫批臭了的陈词滥调,有兴趣的网友可参见老夫的主帖《根据e氏定理戏证正整数集是空集》、《诡异的证明荒唐的结果》、《再论诡异的证明荒唐的结果》.最简捷的论证为:\(\because\quad\forall B\subseteq\mathbb{N}^+\)都有\(B=\phi\),作为特例\(\mathbb{N}^+\)也满足\(\mathbb{N}^+\subseteq\mathbb{N}^+\)这个条件,所以\(\therefore\quad\color{red}{\mathbb{N}^+=\phi}!\)
       很明显\(\forall B\subseteq\mathbb{N}^+都有B=\phi\);此外由前文论及的\(\displaystyle\lim_{k→∞} \mathscr{A}_n\)、\(\displaystyle\lim_{k→∞} \mathscr{B}_n\)、\(\displaystyle\lim_{k→∞} \mathscr{C}_n\)代入亦有\(\{∞\}=\phi\}\)、\(\{1\}=\phi\)!所以elim的这个“并且”\(\color{red}{也是绝对错误的}\).
以上所揭露elim关于\(N_∞=\phi\)的荒唐认知,正是elim【是孬种反集论简单事实乃至反数学的具体表现】
elim所列举春风晚霞的五大罪状,也是elim狂妄无知,反周民强《实变函数论》(其实是反现行数学)的具体表现!春风晚霞认为:
(1)elim不知道什么是极限集?周民强《实变函数论》定义为:单减集列\(\{A_k\}\)的交集\(\displaystyle\bigcap_{k=1}^∞ A_k\)(或单增集列\(\{A_k\}\)的并集\(\displaystyle\bigcup_{k=1}^∞ A_k\)为集列\(\{A_k\}\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\)(参见周民强《实变函数论》P9页定义1.8)或若集列\(\{A_k\}\)的上、下限集相等(即\(\underset{n→∞}{\overline{lim}}=\)\(\underset{n→∞}{\underline{lim}}\)),则说\(\{A_k\}\)的极限集存在并等于上限集或下限集,记为\(\displaystyle\lim_{k→∞} A_k\)(参见周民强《实变函数论》p10页3~4行). 因此我们无论选用哪种定义,对elim自己给出的集合列\(\{A_n:=\{m∈N:m>n\}\}\)都融不进elim的【无穷交就是一种骤变】的“臭便”思想。都将得出集列\(\{A_n:=\{m∈N:m>n\}\}\)的极限集为\(\displaystyle\lim_{k→∞}\{n+1,n+2,…\}\). 所以elim对此非常恼火,指责周民强先生没有讲清楚极限集的定义,根据极限集的定义求极限集方法是【归纳目测法】,并称其“臭便”方法为“精确计算”.请问elim你的“臭便”方法精确在哪里?难道就是把任何非空集合都精确成空集吗?
(2)elim认为【孬种回避极限集的定义,用错误的计算篡改极限集概念,否定集论和周的结果】对此老夫亦有同感,正因为孬种回避极限集的定义,才得到孬种自己的单调集列\(\{A_n:=\{m∈N:m>n\}\}\)的极限集\(\displaystyle\lim_{k→∞} \{n+1,n+2,…\}=\phi\),由此足见elim其种之孬,其种源文劣!
(3) elim认为【归纳目测法得出 \(\lim [n,\infty) \ne\phi\) 与周民强例5对立,自爆孬种之拙劣】
春风晚霞认为,周氏例5:若\(A_n=[n,∞)\)(n=1,2……),则\(\displaystyle\lim_{k→∞} A_n=\phi\)是周民强先生讲完定义1.8的第一个随例,其证明如下:
【证明:】\(\because\quad A_n=[n,∞)\)(已知)
\(\therefore\quad A_1\supset A_2\supset\)……\(\supset A_k\supset…\)
\(\therefore\quad\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ [n,∞)=[∞,∞)=\phi\)!(周民强《实变函数论》定义1.8)【证毕】春风晚霞请问elim春风晚霞什么时候得出 \(\lim [n,\infty) \ne\phi\)了?该证明又在什么地方【与周民强例5对立】了?真他妈的欲加其罪何患无词!
(4) elim认为【孬种戏其臭便可以,但不知数理逻辑所云,没有数学辩论的起码资格】
elim孬种:你真以为你的【无穷交就是一种骤变】能代表现行数学中的数理逻辑吗?你到是给我说说你\(\forall m∈N,m\notin A_m\),再由m的任意性知\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是哪门子数理逻辑?根据你所给的集列\(\{A_n:=\{m∈N:m>n\}\}\),虽然\(\forall m∈N,m\notin A_m\)不也有\(\forall m∈N,m\notin A_m,但m+j(j∈\mathbb{N}^+∈A_m\)吗?一叶障目,不见泰山。一个连集合交并的定义,集合交并运算规律甚至连自己所给集列定义式都不用的纯符号演译会是正确的谓词逻辑演译吗? elim你说我【没有数学辩论的起码资格】?你以为你算什么东西?不屈服于你丧失人性的打压,难道我连反抗的资格都没有吗?我还是那句话讲理(包括讲谓词逻辑)我陪,骂架我也陪,你又能奈我何?
(5)elim认为【\(\displaystyle\lim_{n\to\infty}(m+j)\)唯一可能的解读是\(\sup\mathbb{N}\)因而就是\(\mathbb{N}\). 故对每个\(j\)均有 \(\displaystyle\lim_{n\to\infty}(m+j)=\mathbb{N}\not\in\mathbb{N}\)即\(\infty+j=\infty\)不是自然数.】
elim,\(\displaystyle\lim_{n→∞}(n+j,j∈N\)在方嘉琳《集合论》中叫超限数,在Cantor《超穷数理论基础》中叫超穷正整数,两书该把它记为\(ω+j\);它们的存在是由Peano axioms或Cantor第一生成原则确定的。elim认为【\(\displaystyle\lim_{n→∞}(n+j,j∈N\)不是自然数】有一定的道理,但不是\(N_∞=\phi\)的理由,其实就算elim不承认\(\displaystyle\lim_{n→∞}(n+j,j∈N\)是超穷数或超限数,哪怕它是一堆臭狗屎也有\(N_∞=\displaystyle\lim_{n→∞}\{n+1,n+2,…\}≠\phi\)嘛!
春风晚霞对现行教科书字斟句酌【死磕周民强】又何罪之有?近一年来,elim为了打压春风晚霞,先后篡改了Weierstrass极限理论;篡改了Cantor实数定义;篡改了Peano axioms:篡改了Cantor集合论;污蔑周民强《实变函数论》1.8、1.9所介绍的极限集定义没有讲清楚。污蔑现行的数学论证范式为“党八股数学”;……elim你太看得起老夫了。老夫如果真的“错了”需得你如此大动干戈吗?所以你越是猖狂,越说明老夫的坚持是对的!
发表于 2024-9-1 20:58 | 显示全部楼层
据周民强【实变函数论】p5 集族交定义,定义 1.8,1.9,以及 p10  知道
\(N_{\infty}=\displaystyle\lim_{n\to\infty}\mathbb{N}\cap[n+1,\infty)=\lim_{n\to\infty}[n,\infty)=\varnothing\) 并且
\(H_{\infty}=\displaystyle\lim_{n\to\infty}(\mathbb{N}-A_n^c)=\mathbb{N}-\lim_{n\to\infty}\{m\in\mathbb{N}: m\le n\}=\mathbb{N}-\mathbb{N}=\phi\)
所以\(N_{\infty}\ne\phi\)是孬种反集论简单事实乃至反数学的实锤证据
(1) 孬种回避极限集的定义,用错误的计算篡改极限集概念,否定周的结果和集论,
(2) 归纳目测极限集是孬种反数学的胡扯。只可否证不可证明。
(3) 归纳目测法得出 \(\lim [n,\infty) \ne\phi\) 与周民强例5对立,自爆孬种之卑劣.
(4) 孬种戏其臭便可以,但不知数理逻辑所云,没有数学辩论的起码资格
(5) \(\displaystyle\lim_{n\to\infty}(m+j)\)唯一可能的解读是\(\mathbb{N}\)的元素的上确界因而就是\(\mathbb{N}\)
\(\qquad\)故对每个\(j\) 均有 \(\displaystyle\lim_{n\to\infty}(m+j)=\mathbb{N}\not\in\mathbb{N}\)即\(\infty+j=\infty\)不是自然数.
顽瞎力挺蠢可达,蠢疯死磕周民强
为蒙极限搞篡改,终归孬种八股窑。

回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-2 21:58 | 显示全部楼层
elim 发表于 2024-9-1 20:58
据周民强【实变函数论】p5 集族交定义,定义 1.8,1.9,以及 p10  知道
\(N_{\infty}=\displaystyle\lim_{ ...


elim认为据周民强【实变函数论】p5 集族交定义,定义 1.8,1.9,以及 p10  知道
1、【\(N_{\infty}=\displaystyle\lim_{n\to\infty}\mathbb{N}\cap[n+1,\infty)=\lim_{n\to\infty}[n,\infty)=\varnothing\)】这是对周民强先生的亵渎,并且是\(\color{red}{绝对错误的}
\)\(\because\quad\displaystyle\lim_{k→∞}\{k+1,k+2,…,\}=\{∞+1,∞+2,…\}\)\(\nsubseteq\{\displaystyle\lim_{k→∞}1,\displaystyle\lim_{k→∞}2,…,\}\)\(=\displaystyle\lim_{k→∞}\mathbb{N}^+\)即\(\displaystyle\lim_{k→∞} A_k\nsubseteq(\displaystyle\lim_{k→∞}\mathbb{N}且[n+1,∞)\)\(\therefore\quad N_∞≠\phi\)
还有如下具体的例子,单减集列\(\{\mathscr{A}_n=\{x:x=2n,n∈N\}\);\(\{\mathscr{B}_n=\{x:x=2n+1,n∈N\}\);\(\{\mathscr{C}_n=\{x:x=cos2nπ,n∈N\}\).根据据周民强【实变函数论】定义 1.8,1.9不难证得\(N_∞=\displaystyle\lim_{k→∞} \mathscr{A}_n=∞≠\phi\);\(N_∞=\displaystyle\lim_{k→∞} \mathscr{B}_n=∞≠\phi\);\(N_∞=\displaystyle\lim_{k→∞} \mathscr{C}_n=\{1\}≠\phi\)!
2、elim还认为【并且
\(H_{\infty}=\displaystyle\lim_{n\to\infty}(\mathbb{N}-A_n^c)=\mathbb{N}-\lim_{n\to\infty}\{m\in\mathbb{N}: m\le n\}=\mathbb{N}-\mathbb{N}=\phi\)
所以\(N_{\infty}\ne\phi\)】
elim的这个“并且”,才是被老夫批臭了的陈词滥调,有兴趣的网友可参见老夫的主帖《根据e氏定理戏证正整数集是空集》、《诡异的证明荒唐的结果》、《再论诡异的证明荒唐的结果》.最简捷的论证为:\(\because\quad\forall B\subseteq\mathbb{N}^+\)都有\(B=\phi\),作为特例\(\mathbb{N}^+\)也满足\(\mathbb{N}^+\subseteq\mathbb{N}^+\)这个条件,所以\(\therefore\quad\color{red}{\mathbb{N}^+=\phi}!\)
       很明显\(\forall B\subseteq\mathbb{N}^+都有B=\phi\);此外由前文论及的\(\displaystyle\lim_{k→∞} \mathscr{A}_n\)、\(\displaystyle\lim_{k→∞} \mathscr{B}_n\)、\(\displaystyle\lim_{k→∞} \mathscr{C}_n\)代入亦有\(\{∞\}=\phi\}\)、\(\{1\}=\phi\)!所以elim的这个“并且”\(\color{red}{也是绝对错误的}\).
以上所揭露elim关于\(N_∞=\phi\)的荒唐认知,正是elim【是孬种反集论简单事实乃至反数学的具体表现】
elim所列举春风晚霞的五大罪状,也是elim狂妄无知,反周民强《实变函数论》(其实是反现行数学)的具体表现!春风晚霞认为:
(1)elim不知道什么是极限集?周民强《实变函数论》定义为:单减集列\(\{A_k\}\)的交集\(\displaystyle\bigcap_{k=1}^∞ A_k\)(或单增集列\(\{A_k\}\)的并集\(\displaystyle\bigcup_{k=1}^∞ A_k\)为集列\(\{A_k\}\}\)的极限集,记为\(\displaystyle\lim_{k→∞} A_k\)(参见周民强《实变函数论》P9页定义1.8)或若集列\(\{A_k\}\)的上、下限集相等(即\(\underset{n→∞}{\overline{lim}}=\)\(\underset{n→∞}{\underline{lim}}\)),则说\(\{A_k\}\)的极限集存在并等于上限集或下限集,记为\(\displaystyle\lim_{k→∞} A_k\)(参见周民强《实变函数论》p10页3~4行). 因此我们无论选用哪种定义,对elim自己给出的集合列\(\{A_n:=\{m∈N:m>n\}\}\)都融不进elim的【无穷交就是一种骤变】的“臭便”思想。都将得出集列\(\{A_n:=\{m∈N:m>n\}\}\)的极限集为\(\displaystyle\lim_{k→∞}\{n+1,n+2,…\}\). 所以elim对此非常恼火,指责周民强先生没有讲清楚极限集的定义,根据极限集的定义求极限集方法是【归纳目测法】,并称其“臭便”方法为“精确计算”.请问elim你的“臭便”方法精确在哪里?难道就是把任何非空集合都精确成空集吗?
(2)elim认为【孬种回避极限集的定义,用错误的计算篡改极限集概念,否定集论和周的结果】对此老夫亦有同感,正因为孬种回避极限集的定义,才得到孬种自己的单调集列\(\{A_n:=\{m∈N:m>n\}\}\)的极限集\(\displaystyle\lim_{k→∞} \{n+1,n+2,…\}=\phi\),由此足见elim其种之孬,其种源文劣!
(3) elim认为【归纳目测法得出 \(\lim [n,\infty) \ne\phi\) 与周民强例5对立,自爆孬种之拙劣】
春风晚霞认为,周氏例5:若\(A_n=[n,∞)\)(n=1,2……),则\(\displaystyle\lim_{k→∞} A_n=\phi\)是周民强先生讲完定义1.8的第一个随例,其证明如下:
【证明:】\(\because\quad A_n=[n,∞)\)(已知)
\(\therefore\quad A_1\supset A_2\supset\)……\(\supset A_k\supset…\)
\(\therefore\quad\displaystyle\lim_{n→∞} A_n=\)\(\displaystyle\bigcap_{n=1}^∞ [n,∞)=[∞,∞)=\phi\)!(周民强《实变函数论》定义1.8)【证毕】春风晚霞请问elim春风晚霞什么时候得出 \(\lim [n,\infty) \ne\phi\)了?该证明又在什么地方【与周民强例5对立】了?真他妈的欲加其罪何患无词!
(4) elim认为【孬种戏其臭便可以,但不知数理逻辑所云,没有数学辩论的起码资格】
elim孬种:你真以为你的【无穷交就是一种骤变】能代表现行数学中的数理逻辑吗?你到是给我说说你\(\forall m∈N,m\notin A_m\),再由m的任意性知\(\displaystyle\bigcap_{n=1}^∞ A_n=\phi\)是哪门子数理逻辑?根据你所给的集列\(\{A_n:=\{m∈N:m>n\}\}\),虽然\(\forall m∈N,m\notin A_m\)不也有\(\forall m∈N,m\notin A_m,但m+j(j∈\mathbb{N}^+∈A_m\)吗?一叶障目,不见泰山。一个连集合交并的定义,集合交并运算规律甚至连自己所给集列定义式都不用的纯符号演译会是正确的谓词逻辑演译吗? elim你说我【没有数学辩论的起码资格】?你以为你算什么东西?不屈服于你丧失人性的打压,难道我连反抗的资格都没有吗?我还是那句话讲理(包括讲谓词逻辑)我陪,骂架我也陪,你又能奈我何?
(5)elim认为【\(\displaystyle\lim_{n\to\infty}(m+j)\)唯一可能的解读是\(\sup\mathbb{N}\)因而就是\(\mathbb{N}\). 故对每个\(j\)均有 \(\displaystyle\lim_{n\to\infty}(m+j)=\mathbb{N}\not\in\mathbb{N}\)即\(\infty+j=\infty\)不是自然数.】
elim,\(\displaystyle\lim_{n→∞}(n+j,j∈N\)在方嘉琳《集合论》中叫超限数,在Cantor《超穷数理论基础》中叫超穷正整数,两书该把它记为\(ω+j\);它们的存在是由Peano axioms或Cantor第一生成原则确定的。elim认为【\(\displaystyle\lim_{n→∞}(n+j,j∈N\)不是自然数】有一定的道理,但不是\(N_∞=\phi\)的理由,其实就算elim不承认\(\displaystyle\lim_{n→∞}(n+j,j∈N\)是超穷数或超限数,哪怕它是一堆臭狗屎也有\(N_∞=\displaystyle\lim_{n→∞}\{n+1,n+2,…\}≠\phi\)嘛!
春风晚霞对现行教科书字斟句酌【死磕周民强】又何罪之有?近一年来,elim为了打压春风晚霞,先后篡改了Weierstrass极限理论;篡改了Cantor实数定义;篡改了Peano axioms:篡改了Cantor集合论;污蔑周民强《实变函数论》1.8、1.9所介绍的极限集定义没有讲清楚。污蔑现行的数学论证范式为“党八股数学”;……elim你太看得起老夫了。老夫如果真的“错了”需得你如此大动干戈吗?所以你越是猖狂,越说明老夫的坚持是对的!
回复 支持 反对

使用道具 举报

发表于 2024-9-2 22:10 | 显示全部楼层
孬种以为对无穷大弄几个名词,\(\displaystyle\lim_{m\to\infty}(m+j)\)就是\(\mathbb{N}\)的成员了?
而极限集\(\displaystyle\lim_{n\to\infty} A_n\) 就可以不是\(\displaystyle\bigcup_{n=1}^\infty A_n\) 的子集了?
蠢疯连周民强定义1.9是\(\displaystyle\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k,\;\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty\) 诠释了极限集还是
相反都颠倒,蒙正整数倒数能蒙出无数 0 来就不奇怪了,呵呵
蠢疯力挺蠢可达,孬种死磕周民强.  
从来白痴善自辱,笑看孬种蛋自捣

孬种的劣根性表现为
帖子又臭又长, 行文丑陋不堪, 计算三步两错, 概念一坛糟糠,
逻辑悖谬颠倒, 结论无谱没纲. 扯谎滚屁滔滔, 读来当即称孬
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-9-3 04:47 | 显示全部楼层
周民强《实变函数论》定义1.9琐如何解读自有公论,elim【无穷交就是一种骤变】确实太臭!n→∞时\(\tfrac{1}{n}\)就是等于0!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-10 04:00 , Processed in 0.081104 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表