数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 1105|回复: 1

求证:\(t>\frac{\sqrt{2^k-1}\times\sqrt{m}}{100}\)

[复制链接]
发表于 2024-9-10 21:08 | 显示全部楼层 |阅读模式
已知:\(a=bc\),\(\sqrt[3]{a}>m\),\(t>\sqrt{a}\),\(a\)最小质因数是\(m\)
\(a\)最大质因数是\(t\),奇数\(a>1\),\(b>1\),\(c>1\)
求证:\(t>\frac{\sqrt{a}\times\sqrt{m}}{100}\)
已知:\(2^k-1=ab\),\(\sqrt[3]{2^k-1}>m\),\(t>\sqrt{2^k-1}\),\(\left( 2^k-1\right)\)最小质因数是\(m\)
\(\left( 2^k-1\right)\)最大质因数是\(t\),奇数\(a>1\),\(b>1\),素数\(k>1\)
求证:\(t>\frac{\sqrt{2^k-1}\times\sqrt{m}}{100}\)
 楼主| 发表于 2024-9-10 21:32 | 显示全部楼层
已知:\(\frac{a^2}{c}+2mt^3=2b^2c\),\(c=mt\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\),\(p>0\)
求证:\(m=k\),\(t=p\)
已知:\(\frac{a^2}{c}+2mt^3=2b^2c\),\(c=mt\),\(c\ne3u\),\(c\ne5y\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),\(u>1\),\(y>1\),奇数\(c>0\),素数\(k>0\),\(p>0\)
求证:\(m=k\),\(t=p\)
已知:\(\frac{a^2}{c}+2b^2c=2m^3t\),\(c=mt\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),奇数\(c>0\),素数\(k>0\),\(p>0\)
求证:\(m=k\),\(t=p\)
已知:\(\frac{a^2}{c}+2b^2c=2m^3t\),\(c=mt\),\(c\ne3u\),\(c\ne5y\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),\(u>1\),\(y>1\),奇数\(c>0\),素数\(k>0\),\(p>0\)
求证:\(m=k\),\(t=p\)
已知:\(\frac{a^2}{c}+2mt^3=2b^2c\),\(c=mt\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),奇数\(c>0\),素数\(m>0\),\(p>0\)
求证:\(t=p\)
已知:\(\frac{a^2}{c}+2mt^3=2b^2c\),\(c=mt\),\(c\ne3u\),\(c\ne5y\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),\(u>1\),\(y>1\),奇数\(c>0\),素数\(t>0\),\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{c}+2b^2c=2m^3t\),\(c=mt\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),奇数\(c>0\),素数\(m>0\),\(p>0\)
求证:\(t=p\)
已知:\(\frac{a^2}{c}+2b^2c=2m^3t\),\(c=mt\),\(c\ne3u\),\(c\ne5y\),整数\(a>1\),\(b>1\)
\(m>1\),\(t>1\),\(u>1\),\(y>1\),奇数\(c>0\),素数\(t>0\),\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{3t}+54t=6b^2t\),整数\(a>1\),\(b>1\),奇数\(t>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{5t}+250t=10b^2t\),整数\(a>1\),\(b>1\),奇数\(t>1\),素数\(p>0\)
求证:\(t=p\)
已知:\(\frac{a^2}{7t}+686t=14b^2t\),整数\(a>1\),\(b>1\),奇数\(t>1\),素数\(p>0\)
求证:\(t=p\)
已知:\(\frac{a^2}{3m}+6m^3=6b^2m\),整数\(a>1\),\(b>1\),奇数\(m>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{35m}+10m^3=10b^2m\),整数\(a>1\),\(b>1\),奇数\(m>1\),素数\(p>0\)
求证:\(m=p\)
已知:\(\frac{a^2}{7m}+14m^3=14b^2m\),整数\(a>1\),\(b>1\),奇数\(m>1\),素数\(p>0\)
求证:\(m=p\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-21 00:42 , Processed in 0.069119 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表