数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 1130|回复: 0

费马大定理-模形式

[复制链接]
发表于 2024-10-27 19:09 | 显示全部楼层 |阅读模式
费马大定理-模形式

原创 张天蓉 天舸 2024 年 09 月 24 日 01:09 美国

怀尔斯证明费马大定理有三大要素:椭圆曲线、模形式、谷山-志村猜想,此篇介绍其二。



拉马努金是数学神才,他发现了数不尽的奇妙的数学公式,他研究这些公式的奇特性质。今天我们就从他写下的一个表达式开始……


图 1 :拉马努金 tao 函数

拉马努金(Ramanujan,1887-1920)研究的,乍一看好像也不是什么深奥的函数,展开后只是一个 q 的多项式级数而已。不过,拉马努金就是拉马努金,他善于发现一般人看不见的数学奥秘。他考察这个多项式的系数 t(n) ,发现一些特点,比如下面这个,系数 t(n) 之间有种奇怪的关联:

如果 m 和 n 互质,则 t(mn) = t(m) t(n) 。            (公式 1)

比如说,2 和 3 是互质的,t(2) = -24 ,t(3) = 252 ,计算 t(2) t(3) = -24 × 252 = -6048 ,正好等于 t(2×3) = t(6) 。还可以检查别的互质数对应的系数,发现它们都符合(公式 1)。

有关这个 Δ(q) 函数,拉马努金还发现了其它几个有趣的性质,他把它们总结成了几个猜想,我们不在这儿一一列举了。这种类似的函数还有很多别的,比如:

  

等等。

以上所说的,与 Δ(q) 具有“类似”性质的函数,被数学家们称之为“模形式”,在数学上,模形式(Modular form)被定义为一个上半复数平面上的全纯函数 f(z) :



其中 k 是整数,叫做模形式的权。例如,拉马努金研究的 Δ(z) 函数,是权 k=12 的判别模形式

比拉马努金更早,模形式还有另外一位老祖宗:德国犹太人数学家爱森斯坦(Einsenstein,1823-1852)。爱森斯坦是喜欢数论的小神童,不幸从小健康不佳,患有脑膜炎等疾病,他于 29 岁时就死于肺结核。爱森斯坦由于研究数论的原因而研究模形式,并作出重要贡献。爱森斯坦以最简单的模形式“爱森斯坦级数”闻名,另一位同时代的德国数学家克罗内克(Leopold Kronecker ,1823–1891)也对此作出贡献,见图 2 。

几个世纪以来数学家们一直对模形式丰富的对称性着迷。模形式越来越多地出现在各种各样的问题中:它们是怀尔斯 1994 年证明费马大定理的关键要素;乌克兰数学家,2022 年菲尔兹奖得主马林娜用它解决高维空间的球体堆积问题;它们在朗兰兹纲领(“数学大统一理论”)中发挥着核心作用;它们甚至被用来研究物理中的弦论和量子物理学中的模型。


图 2 :爱森斯坦模形式

在数学的发展过程中,开始时各个领域犹如一个个孤岛,之后,数学家们在孤岛之间架起桥梁,不仅应用不同的知识解决了难题,也建立起新的数学分支。例如,在数论的发展过程中就架起了多个桥梁,发展出了初等数论、解析数论、代数数论和几何数论四个部分。属于解析数论的模形式,便是复分析与数论之间的一座“桥梁”。人们可以通过模形式,利用复分析的工具,来研究整数的性质,解决数论难题。黎曼猜想中使用的黎曼 zeta 函数也是解析数论中的一个核心函数,它编码了有关素数分布的重要信息。   

为什么模形式更重要呢?因为它是一种在复上半平面上表现出特殊对称性的全纯函数。具有高度对称性的函数在科学研究中有重要的意义,最典型的例子就是三角函数(正弦、余弦函数),它们在物理及工程中的作用广为人知。模形式的对称性是如此惊人和复杂,使模形式比三角函数更为强大,特别是对数论问题而言,它们可用于编码有关整数的深层算术信息。

模形式 f(z) 的定义来看,它们在离散矩阵群 SL2(Z) 的作用下以特定的线性分式的方式变换。模形式的对称性由 2×2 的特殊线性群定义,其中矩阵中的四个数字始终为整数。



你可能会说,从三角函数的图像就可以看出它们的对称性,而模形式长什么样呢?怎么看出它们的对称性呢?的确如此,复数函数很难形象化,因为它是从一个复数平面映射到另一个复数平面,需要 4 维图像才能画出来。因此,目前的办法是求助于颜色和亮度,一定程度上也可以看出函数的对称性。

模形式定义在复数的上半平面 H ,H 可以由共形映射转换到单位圆盘 D 中的点。因此,模形式的对称性可以用一个彩色的单位圆盘 D 来表示。有时也用 H 的方形彩色图表示。

例如,下图是判别模形式的图案:


图 3 :判别模形式

从中可看出,有平移对称性、反射对称性、周期性、和自相似性。

最简单的模形式“爱森斯坦级数”的图像:   


图 4 :爱森斯坦级数

模形式与椭圆函数密切相关,关键关系在于“模性定理”(之前也称为谷山-志村猜想),我们将于下一篇介绍。

参考资料:

Zagier, D. (2008). "Elliptic Modular Forms and Their Applications," in The 1-2-3 of Modular Forms (edited by K. Ranestad), Springer, Berlin, Heidelberg.   

天舸

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-7 10:59 , Processed in 0.095365 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: