数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
123
返回列表 发新帖
楼主: elim

\(孬种搅局2\Huge\color{red}{\textbf{超穷数存在于}\mathbb{N}\textbf{之外}}\)

[复制链接]
发表于 2025-4-29 11:48 | 显示全部楼层

elim胡说【孬种不住狗屁不通地驴打滚,,故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.哈哈哈哈蠢疯顽瞎种太孬】
其实,狗屁不通地驴打滚的孬种就是elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对小学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\);现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-29 13:11 | 显示全部楼层

       elim,放你娘的臭狗屁!老子何时【故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.】你他娘的根据现行的数学理论证明了【连 x+1 是超穷数, x 亦然】了吗?你他娘的想靠频发(发了删、删了又发)宿帖耍赖,真不要脸!
       其实,狗屁不通地驴打滚的孬种是你elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!事实上,你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界点。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\)。
       现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。
       elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

发表于 2025-4-30 04:04 | 显示全部楼层

       elim,放你娘的臭狗屁!老子何时【故意回避哪个有限数的后继为最小超穷数的问题.白痴连 x+1 是超穷数, x 亦然也不知道.】你他娘的根据现行的数学理论证明了【x+1 是超穷数, x 亦然】了吗?你他娘的想靠频发(发了删、删了又发)宿帖耍赖,真不要脸!
       其实,狗屁不通地驴打滚的孬种是你elim!根据谢邦杰《超穷数与超穷论法》p4页第一行所说的“无限集合的基数叫超穷基数”。因为\(\mathbb{N}\)是无限集,所以\(\mathbb{N}\)必含超穷数。老夫从未回避【哪个有限数的后继为最小超穷数的问题】!事实上,你狂吠多少次自然数集不含超穷数(或超穷数在自然数集之外),我就证明了多少次在自然数集中“那个预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。“比你能写出、读出、想像得到的自然数都大的自然数叫无穷自然数。”这可是小学四年级对学生渗透无穷自然数的描述性定义。所以这个“预先给定的、无论怎样大的自然数”就是自然数集\(\mathbb{N}\)中有限与无限的分界点。即自然数集\(\mathbb{N}=\{n:n\le x\quad n\in\mathbb{N}\}\)\(\cup\{n:n>x\quad n\in\mathbb{N}\}\)。
       现行数学中称集合\(\mathbb{N}_e=\{n:n\le x\quad n\in\mathbb{N}\}\)为自然数列的一个截段(参见方嘉琳《集合论》P82页第3—5行)。集合\(\mathbb{N}_e\)中的数均为有限数。而集合\(\mathbb{N}_{\infty}=\{n:n> x\quad n\in\mathbb{N}\}\)是无限集,\(\mathbb{N}_{\infty}\)中的任何一个自然数都是无穷自然数!所以我们有理由说第一个大于“预先给定的、无论怎样大的自然数\(x\)的后继\(x+1\)就是最小超穷数”。
       elim务必先证明【x+1 是超穷数, x 亦然】,再判断谁是白痴!若你不能证明【x+1 是超穷数, x 亦然】这个命题,就像泼妇一样骂这骂那,那就是放你娘的臭狗屁!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-4-30 04:40 | 显示全部楼层
本帖最后由 elim 于 2025-4-29 14:29 编辑

孬种不住狗屁不通地驴打滚,  故意回避
哪个有限数的后继为最小超穷数的问题.
后来胡乱泡制的所谓”回答”说明这个无
赖白痴连 x+1 超穷 x 亦然都不懂不会证.

哈哈哈哈蠢疯顽瞎种太孬

直击孬种要害的主题已占据本版块头版
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-4-30 16:30 , Processed in 0.087750 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表