数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Huge\color{red}{\star}\color{navy}{\textbf{ 顽瞎目测反数学}}\)

[复制链接]
发表于 2025-7-28 13:46 | 显示全部楼层
本帖最后由 春风晚霞 于 2025-7-28 14:09 编辑


elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:譔帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于蔌等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立充数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中,只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
Elim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。

回复 支持 反对

使用道具 举报

发表于 2025-7-29 05:17 | 显示全部楼层

elim于 2025-7-28 08:44又发表的一篇反现行数学的帖子:该帖称【欢迎滚驴继续驴滚.我们来看看蠢疯的模样】,elim,我再次告诉你,不管你欢迎与否,只要你再纠缠我们争议未果的东西,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\(\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立序数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)(其中\(\Omega_j=\{j\cdot\omega,j\cdot\omega+1,…\)\(j\cdot\omega,…,j\cdot\omega+\nu(=\displaystyle\lim_{n \to \infty}n)\}\).只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
        melim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩的学问有多高,但我坚信与戴、康、威相比,无论是你elim还是他李利浩都相差甚远。我当然宁可信戴、康、威的,也坚决不信elim和李利浩的。
回复 支持 反对

使用道具 举报

发表于 2025-7-29 15:24 | 显示全部楼层

        elim最近频繁发帖称他发明了【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.】我对elim的帖子,只要再对我发动攻击,我都坚决奉陪到底!现对elim的这个帖子评述于后:
【原文】
        自然数由皮亚诺公理定义.  而elim指出了最小无穷序数 \(\alpha\)不是后继序数因而是极限序数.这一事实(因为小于\alpha\)的序数是有限序数, 其后继仍有限故非\(\alpha\). 大于等于\(\alpha\)的序数的后继更不可能是\(\alpha\), 据皮亚诺公理, 非零自然数皆是某序数的后继. 由此知道\(\alpha\),不是自然数. 即它不是序数链\(\mathbb{N}\)的成员. 因序数链\(\mathbb{N}\)之前无序数, \(\alpha\)在序数链\(\mathbb{N}\)之后.(即每个自然数都先于最小无穷大序数\(\alpha\)), 故皆为有限数.
\(\color{red}{【评述】}\)
        elim的这个帖子,内容基本上是抄袭方嘉琳《集合论》截段的定义,方嘉琳是这样定义自然数列的截段的:[定义3:][小于蔌等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成有限和无限两个部份,即\(\mathbb{N}=\{\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\}\).其中\(\{\{x:x\in\mathbb{N}且x\le n\}\)叫有限集,而\(\{\{x:x\in\mathbb{N}且x> n\}\)称无限集. 数n即为有限与无限的“限”.
        elim指出【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这是elim有学无术,不能正确区分极限序数与孤立充数的概念。什么叫孤立序数和极限序数:[定义]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中,只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限充数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中第个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极限推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
Elim根据自然数的截断理论,最多只证明\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!
【原文】
        因\(\mathbb{N}\)无最大元, 大于每个自然数的最小序数就是li最小无穷大序数\(\alpha\). 这就完成了\(\mathbb{N}\)是\(\alpha\)的前段\(\alpha=\omega\)(1st极限序数)的证明.
\(\color{red}{【评述】}\)
        由于在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中\(\omega\in\Omega_1\),从康托尔有穷基数的无穷序列1,2,……,\(\nu(=\displaystyle\lim_{n \to \infty}n)\),\(\omega\),……知\(\nu(=\displaystyle\lim_{n \to \infty}n)\) \(<\omega\),所以\(\nu(=\displaystyle\lim_{n \to \infty}n)\)\(\in\mathbb{N}\)
【原文】
        李利浩先生说春风晚霞生来就这模样.那意思我理解并同意: 种忒孬. 不论它咋样装都个蠢东西.  呵呵
\(\color{red}{【评述】}\)
        我不管这个李利浩说了什么?但我坚信与戴、康、威相比,elim你还相差甚远。我凭什么要相信你的胡说八道呢?

回复 支持 反对

使用道具 举报

发表于 2025-7-29 22:33 | 显示全部楼层
elim必须为综合论坛霸屏买单!


   近段时间elim把一些被批臭的“定理”反复(发了删,删了又发)发在论坛,造成论坛霸屏现像。产生这种不良现像,elim还想甩锅给春风
        【原文】【定理】自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim的定理【【定理】自然数皆有限数】命题为假,改成:【有限自然数皆自然数】方为真命题。
        【原文】【证明】记\(\alpha\)为最小无穷序数,则它之前的都是有限序数.因\(\alpha\)不是有限序数的后继,故其不是任何序数的后继即\(\alpha\)不是自然数,但序数链\(\mathbb{N}\)不含非自然数, 故\(\alpha\)后面无自然数. 即\(\mathbb{N}\)是\(\alpha\)的前段可见自然数皆有限数.
        \(\color{red}{【评析】}\)
        elim关于定理的证明与《集合论》中有限自然数的定义仿真度极高。只是把自然数截段概念中\(\{x:x\in\mathbb{N}且x\le n\}\)其本一致,所不同的只是把\(\{x:x\in\mathbb{N}且x\le n\}\)中的n换成\(\alpha\),忽略\(\alpha\in\mathbb{N}\)这个条件。其余与有限集的定义雷同。(参见方嘉琳《集合论》P82页定义3)。所以elim先生用有限集的定义来证明自然数皆有限数是循环论证。
        【原文】【推论1】\(\alpha=\omega \)(1st极限序数)
        \(\color{red}{【评析】}\)
        由\(\alpha=\omega \)反推证明伊始的【记\(\alpha\)为最小无穷序数】,可以看出elim是在玩借尸还魂的把戏。从康托尔有穷基数的无穷序列1,2,…,\(\nu(=\displaystyle\lim_{n \to \infty}n\),\(\alpha\),……看,\(\displaystyle\lim_{n \to \infty}n\)是属于\(\mathbb{N}\)的。所以elim是想通过他的循环论证,野蛮地把\(\displaystyle\lim_{n \to \infty}n\)逐出自然数集\(\mathbb{N}\)
        【原文】【推论2】\(\displaystyle\lim_{n \to \infty}n\)不是自然数.
         \(\color{red}{【评析】}\)
        由有限自然数的定义,推导不出【\(\displaystyle\lim_{n \to \infty}n\)不是自然数.】
        【原文】自然数完全由皮亚诺公理确定. 而极限, 无穷(及有穷有限)这些概念却不能由皮亚诺公理导出. 但从数学基础的视角看, 康托的序数概念逻辑上是先于自然数概念的\(\mathbb{N}\)是满足皮亚诺公理的序数全体). 小于最小无穷序数, \(\alpha\)的序数是有限序数. 从这些认识得出\(\mathbb{N}\)是\(\alpha\)的前段 的猜想. 而本定理就是被论证后的这一猜想的直接推论..
        \(\color{red}{【评析】}\)
        你既然知道【自然数完全由皮亚诺公理确定】、【康托的序数概念逻辑上是先于自然数概念的】那你为什么还把用皮亚诺公理或康托尔实正整数理论证明\(\displaystyle\lim_{n \to \infty}n\)是自然数的方法诬陷为目测法?你那个“底层逻辑”倒是不用目测方法,得出的结论对吗?
回复 支持 反对

使用道具 举报

发表于 2025-7-30 05:36 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之二


        根据方嘉琳《集合论》截段的定义:[定义3:][小于或等于某个自然数n的自然数集即集\(\{x:x\in\mathbb{N}且x\le n\}\)称为自然数列的一个截段。和自然数列的一个截段等势称为有限集,否则称为无限集,空集也是有限集。](参见方嘉琳《集合论》P82页3—7行).很明显,该定义中自然数n把自然数集\(\mathbb{N}\)分成两个部份,若数n取值为预先给定的无论怎样大的自然数,那么\(\mathbb{N}=\{x:x\in\mathbb{N}且x\le n\}\cup\)\(\{x:x\in\mathbb{N}且x\> n\}\).其中\(\{x:x\in\mathbb{N}且x\le n\}\)叫有限自然数集,即\(\{x:x\in\mathbb{N}且x\le n\}\)中的数皆为有限数。而\(\{x:x\in\mathbb{N}且x> n\}\)称无穷大自然数集. 其中的每个数都是无穷大自然数。这个预先给定的无论怎样大自然数n即为有限自然数与无穷自然数的“限”.
        elim认为【最小无穷序数 \(\alpha\)不是后继序数因而是极限序数】这应说是elim对极限序数的无知。那么,什么样的序数叫极限序数呢?现行教科书是这样定义的。[定义:]有直前的序数的序数叫孤立序数;无直前的序数的序数叫极限序数。在康托尔实正整数集\(\Omega=\mathbb{N}\displaystyle\bigcup_{j\in\mathbb{N}}\Omega_j\)中,只有0,或\(j\omega\)(\(j\in\mathbb{N}\)是极限序数,其余均为孤立序数。(参见方嘉琳《集合论》P133页定义3))。根据皮亚诺公理第二条\(\mathbb{N}\)中每个确定定的自然数a,都有确定的后继\(a’=a+1\),且a+1也是自然数。所以持续运用皮亚诺公理第二条,极易推出\(v=\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
       elim根据自然数的截断理论对有限数的定义,最多只证明了\(\displaystyle\lim_{n \to \infty}n\)不是有限数,丝毫也未证明\(\displaystyle\lim_{n \to \infty}n\)不是自然数!至于elim在主题《浅说自然数皆有限数》和《滚驴截段定理泡汤》下所举“反例”,那也只能说明elim不能正确认识“有限自然数皆自然”与“自然数并非是有限自然数”(即白马非马)的辩证关系。仅此而己,别无其它!
回复 支持 反对

使用道具 举报

发表于 2025-7-30 14:52 | 显示全部楼层
elim必须为综合论坛霸屏现像买单之三


       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

发表于 2025-7-31 05:04 | 显示全部楼层

       elim你她娘的不是很懂自然数\(\mathbb{N}\)吗?你诜说以下命题的证明哪步错了?为什么错了?你若说不出个子午卯酉,你龟儿子才是【数学白痴厚颜无耻网痞流氓畜生不如】!你两年就扬言想把我怎么样,你龟儿子也不屙泡尿照照自己,你能把我怎么样?对于一个90多岁的老人,老子也会骂人!若因骂了你就犯了哪条天规,可能还没有哪个监狱会接收一个90多岁的罪犯!你妈的既然很懂集合论,很懂数学,很不【数学白痴厚颜无耻网痞流氓畜生不如】,哪你就用现行数学的集合论知识,用皮亚诺公理,用康托尔的自然生成法则证明下列命题什么哪步错了。事实上你离开那个狗屁不如的“底层逻辑”,你根证明不了\(\displaystyle\lim_{n \to \infty}n\notin\mathbb{N}\)!下面欢迎e大教主用集合论或自然数理评判以下命题及证明的对错!
       【命题】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\displaystyle\lim_{n \to \infty}\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-7-31 11:31 | 显示全部楼层
设\(\alpha\)为最小无穷序数, 则\(\alpha\)非它之前(有限)序数的后继. 故非自然数. 因序数链\(\mathbb{N}\)不含非自然数, \(\alpha\)后于链\(\mathbb{N}\).
定理 \(\mathbb{N}\)为\(\alpha\)的前段, 自然数皆有限数 就此得证!
\(\qquad\)由此即知顽瞎目测\(\displaystyle\lim_{n\to\infty} n\in\mathbb{N}\) 泡汤,
\(\qquad\)孬种杂耍回滚做空定理也随之泡汤.

想想都好笑, 这完瞎了的还搞啥子目测啊?呵呵
回复 支持 反对

使用道具 举报

发表于 2025-7-31 11:59 | 显示全部楼层
自然数\(\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数


        因为ω是极限序数,所以\(\nu(=\displaystyle\lim_{n \to \infty}n\)不是ω的直接前趋,所以\(\displaystyle\lim_{n \to \infty}(n\)\(+1)≠ω\),又因ω的后继是ω+1,所以\(\displaystyle\lim_{n \to \infty}(n+1)\)也不是ω的后继。所以\(\displaystyle\lim_{n \to \infty}(n+1)<ω\)(数的三歧性),所以\(\displaystyle\lim_{n \to \infty}(n+1)\in\mathbb{N}\)(即皮亚诺公理对\(\nu=\displaystyle\lim_{n \to \infty}n\)成立)。因为\(\displaystyle\lim_{n \to \infty}(n+1)>\)\(\displaystyle\lim_{n \to \infty}n\),所以\(\nu=\displaystyle\lim_{n \to \infty}n\)不是\(\mathbb{N}\)中的最大数.这也是在\(\mathbb{N}\)中只有更大没有最大的内在原因。其实,就算你所以野蛮地把\(\displaystyle\lim_{n \to \infty}n\)驱逐出\(\mathbb{N}\),你也证明不了\(\mathbb{N}\)中的元素都是有限自然数!因为\(\mathbb{N}\)中值为无穷的元素还很多嘛!故此,eim的\(\displaystyle\lim_{n \to \infty}n\)\(\notin\mathbb{N}\)纯属胡闹!所以,elim凡以\(\displaystyle\lim_{n \to \infty}n\)为\(\mathbb{N}\)中最大元的立论、驳论、点评都是他娘的扯淡!从而以此证明【自然数皆有限数】纯属妄想!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-19 15:19 , Processed in 0.093957 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表