数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 58|回复: 1

\(\Huge\color{red}{elim口是心非,表里不一,愧为民科领袖! }\)

[复制链接]
发表于 2025-9-10 07:02 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-9-14 18:30 编辑

elim不也认为【数学讲论证,讲自洽】吗?因为\(\displaystyle\lim_{n \to \infty}\tfrac{10^n}{n}=\infty\)(通俗地讲\(\displaystyle\lim_{n \to \infty}10^n\)比\(\displaystyle\lim_{n \to \infty}n\)大得多得多),学术上称\(\displaystyle\lim_{n \to \infty}10^n\)是\(\displaystyle\lim_{n \to \infty}n\)的较高阶无穷大!所以,你的\(\displaystyle\lim_{n \to \infty}n=\)\(Max\mathbb{N}\)、\(\displaystyle\lim_{n \to \infty}n=\)\(Sup\mathbb{N}\)都不自洽。造成不自洽的原因是你根据\(\displaystyle\lim_{n \to \infty}\)臆测,根本就没有根据现行的数学理论对其进行【论证】。正因为如此,你臆测法得出的结果,与现行教科书(你所谓的目测法)得岀的结果相悖。作为民科领袖,你难道不知数学问题的对与错吗?!
 楼主| 发表于 2025-9-18 07:09 | 显示全部楼层

       【定理】: 若集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\),则\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)
        【证明】:因为集列\(\{A_k=\{m\in\mathbb{N}:m≤k\}\)(已知)
易证集列\(A_k=\{1,2.…,(k-2),(k-1),k\}\)单调递增。所以根据单调集列极限集的定义(如北大教材《实变函数论》P9定义1.8)有:
\(\displaystyle\lim_{n \to \infty}A_n=\)\(\displaystyle\bigcup_{n=1} ^{\infty}A_n=\)\(\{1,2,…\)\(\displaystyle\lim_{n \to \infty}(n-2)\),\(\displaystyle\lim_{n \to \infty}(n-1)\),\(\displaystyle\lim_{n \to \infty}n\}=\)\(\mathbb{N}\),所以\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\)!
【证毕】
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-18 09:10 , Processed in 0.095553 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表