|
|
楼主年纪不小了吧? 看着老痴得挺厉害啊, 呵呵
令\(\scriptsize\mathbb{Q}=\{{\frac{p}{q}}\mid p,q\in \mathbb{Z},q\ne 0\},\mathbb{Q}’= \{{\frac{p}{q}}\mid p,q\in \mathbb{Z},q\ge\gcd(p,q)> 0\}\)
易见\(\scriptsize\mathbb{Q}’\subset\mathbb{Q}\). 对\(\frac{p}{q}\in\mathbb{Q}\)令\(p’=\frac{p}{\gcd(p,q)},q’=\frac{q}{\gcd(p,q)}\)
因 \(\small q\ne 0,\;\gcd(p,q)>0,\;q’\ge\gcd(p’,q’)=1>0\) 于是
\(\frac{p}{q}=\frac{p’}{q’}\in\mathbb{Q}’\). 所以 \(\mathbb{Q}= \mathbb{Q}’.\)
|
|