数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 49|回复: 2

\(\Huge\color{red}{对elim又一反数学帖子的回复 }\)

[复制链接]
发表于 2025-11-7 06:26 | 显示全部楼层 |阅读模式
本帖最后由 春风晚霞 于 2025-11-8 18:21 编辑


        elim于2025-11-6 22:54发帖称【在现行数学中, 数列(菲赫金哥尔兹称其为整序变量)\(\{a_n\}\)的定义域为\(\mathbb{N}_+=\{m∈N:m>\)\(0\}\)上的函数, 而\(\lim n=∞\)不在数列的定义域中,  因此,\(a_∞\)无定义。所以一般地\(\lim a_n=a_∞\)不成立.滚驴蠢可达的猿声啼不住, 现行数学的轻舟已过万重山】春风晚霞试问elim,①为什么\(\displaystyle\lim_{n \to \infty} n=∞\)不在定义域\(\mathbb{N}_+=\{m∈N:m>\)\(0\}\)中?是\(\displaystyle\lim_{n \to \infty} n\)\(≤0\)吗?你的依据是什么?你论证的“底层逻辑”又是什么?是\(\displaystyle\lim_{n \to \infty} n=∞\)不属于\(\mathbb{N}\)吗?你的依据是什么?你论证的“底层逻辑”又是什么?②elim你必须知晓\(\displaystyle\lim_{n \to \infty} n\)\(\notin\mathbb{N}\)这只是你期待的结果,并非是经得起逻辑推敲的数学事实。所以,尽管你每天把被批臭批烂的宿帖发上几百次,你都无法改变\(\displaystyle\lim_{n \to \infty} n\)\(\in\mathbb{N}\)这一事实!所以无论你怎样鬼哭狼嚎,你都无法证明你不反对现行数学。另外,书上有的东西,一经你的手或口都会变成你反数学的“证据”。就说【ω=\(\mathbb{N}\)】吧,你罗列的那些书上,也无非是给出了ω的含意,而绝非有ω=\(\mathbb{N}\)这个等式!前面【】号中的内容就是铁证!
 楼主| 发表于 2025-11-11 14:50 | 显示全部楼层

命题:皮亚诺公理对\(\displaystyle\lim_{n \to \infty}n\)依然成立。
        证明:因为在现行数学理论中只有形如\(j\cdot\omega\)\((j\in\mathbb{N})\)这样的数没有直接前趋(即极限序数),所以\(\displaystyle\lim_{n \to \infty}n\)不是\(\omega\)的直接前趋,故此\(\displaystyle\lim_{n \to \infty}n+1\ne\omega\),又因\(\omega\)的后继是\(\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1\)\(\ne\omega+1\),所以\(\displaystyle\lim_{n \to \infty} n+1<\omega\)(实数三分律原理),所以\(\displaystyle\lim_{n \to \infty}n+1\in\mathbb{N}\).所以皮亚诺公理对自然数\(\displaystyle\lim_{n \to \infty}n\)成立.【证毕】。
        【推论】
①、\(\displaystyle\lim_{n \to \infty} n+j\in\mathbb{N}\)
②、\(\displaystyle\lim_{n \to \infty}2n\in\mathbb{N}\)
③、\(\displaystyle\lim_{n \to \infty}2^n\in\mathbb{N}\)
④、\(\displaystyle\lim_{n \to \infty}10^n\in\mathbb{N}\)
……
回复 支持 反对

使用道具 举报

 楼主| 发表于 2025-11-11 16:34 | 显示全部楼层
elim最迎发帖称【春霞以驴滚搅局掩盖N真象,  猥琐至极由皮亚诺公理及冯诺依曼构造,  ω=N是最小无穷序数. 因自然数皆小于 ω, 故自然数均小于最小无穷.即自然数皆有限.N不含无穷元.】春风晚霞试问elim,皮亚诺公理的哪一条说了ω=N?冯\(\cdot\)诺依曼自然数枸成法又在什么地方说了ω=N?陶哲轩、龚升又在他们著述的哪章、哪页、哪行说了ω=N?又有哪位数学工作者在他仙的著述中说了\(\displaystyle\lim_{n \to \infty} n=\)\(Sip\mathbb{N}\)?又有哪位数学工作者认为\(\displaystyle\lim_{n \to \infty} n=\)\(Max\mathbb{N}\)?,又有哪位数学工作者认为\(\displaystyle\lim_{n \to \infty} n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty} 2^n\)、\(\displaystyle\lim_{n \to \infty} 10^n\)……是一样大的?又有哪位数学是靠骂人骂出业绩的?其实骂人大家都会,如果骂人能骂出数学业绩,赌场中的流氓、市场上的泼妇岂不个个都是数学大师了?所你在论坛中你有理就说理,无理就滚蛋!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-14 14:18 , Processed in 0.091099 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表