数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
12
返回列表 发新帖
楼主: elim

\(\Huge^\star\;\omega=\mathbb{N}\textbf{ 为最小无穷序数}\)

[复制链接]
发表于 2025-11-28 07:44 | 显示全部楼层

         任何教科书都支持\(\displaystyle\lim_{n \to \infty}n\in\mathbb{N}\),及与之逻辑等价的任何命题。现在我们根据Weierstrass 极限定义直接证明\(\displaystyle\lim_{n \to \infty}n\)、\(\displaystyle\lim_{n \to \infty}2n\)、\(\displaystyle\lim_{n \to \infty}2^n\)、\(\displaystyle\lim_{n \to \infty}10^n\)、……\(\in\mathbb{N}\)!
        〖证明:〗根据Weierstrass极限定义:\(\displaystyle\lim_{n \to \infty}x_n=a\)\(对\forall \varepsilon>0\iff \exists\)正整数\(N_\varepsilon\)\((=[\tfrac{1}{\varepsilon}]+1)\),当\(n>N_{\varepsilon}\),有\(|x_n-a|<{\varepsilon}\),令\(\varepsilon=(\displaystyle\lim_{n \to \infty}n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}n\)\(\in\mathbb{N}\)
        同理:
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}2n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}2^n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}2^n\)\(\in\mathbb{N}\);
        令\(\varepsilon=(\displaystyle\lim_{n \to \infty}10^n)^{-1}\),则\(N_\varepsilon\)\(=\displaystyle\lim_{n \to \infty}10^n\)\(\in\mathbb{N}\);
……      
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-11-28 09:37 , Processed in 0.069998 second(s), 14 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表