数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 7|回复: 0

辐边总和公式及其在二维平面图着色中的应用

[复制链接]
发表于 2025-12-20 21:01 | 显示全部楼层 |阅读模式
本帖最后由 朱明君 于 2025-12-20 13:09 编辑

辐边总和公式及其在二维平面图着色中的应用
作者:朱火华
日期:2025年11月25日
1. 引言
二维平面图的着色问题是图论中的经典难题。四色定理表明,任何平面图均可使用四种颜色进行着色。本文提出了辐边总和公式,通过将任意二维平面图(原图)简化为单中心轮图(新图),实现了着色过程的规范化和简化。新图与原图在结构和功能上的等价性,确保了着色结果的可映射性,为平面图着色提供了系统化的方法。辐边总和数等于新单中心轮图的辐边数,也等于环上节点数与新图环边数。
2.辐边总和公式与图结构转换
辐边总和公式适用于由外向内两层及以上环加中心区域结构的标准二维平面图,
也包括中心区域任意结构的平面图,其中中心区域节点数≥0。计算时,每轮构型的辐边独立计算后相加。
在二维平面图中,除外围节点外,围内每个节点均为轮构型中心,点边可共享,轮构型间部分或全部点边叠加。(即所有二维平面图都是由轮构型模块叠加而成)该公式的目的是将其转换为单中心轮图,以简化着色(单中心轮图仅需4色,与原图结构功能等价)。
辐边总和公式作为纯代数公式,不受二维平面图定义约束,与传统图论中的欧拉公式分属不同体系,其定义如下:
基础公式:w = 6(n - m - 1) + (m - d)
其中,n 为节点总数(n ≥ 4),m 为外围节点数(m ≥ 2),d 为第二层环节点数(d ≥ 2),w 为辐边数(w ≥ 6)。系数6源于最小解情况:当 n = 4,m = d = 2 时,w = 6;公式中“减1”是为减去围内一个基准值,且所有顶点度数均≥1。
特殊情形下:
若 m = d,且m+d为≥ 4的偶数。
则 w = 6(n - m - 1) = 6(n - (m + 1));
若 m = d = 3,则 w = 6(n - 4)。
2.2 普适公式与虚拟环构建
针对标准和非标准二维平面图,均可通过添加双层虚拟环(总节点数6,每层含3个节点)覆盖所有平面图类型,简化计算过程。由此得到普适公式:
w = 6(n新 - 4)
其中,n原为二维平面图(原始图)的节点个数(n原≥ 0);6 为两层虚拟环的节点个数,n新 =n原 + 6 为添加虚拟环后新图的节点总数。双层虚拟环的作用在于包裹原图,有效处理孔洞、亏格曲面、多面体等屏蔽结构。添加虚拟环后的新图为实际存在的图,原图作为其子结构包含于新图中;去掉双层虚拟环后,原图可继承新图的着色结果,且其色数≤4。
注:普适公式将自动按照标准处理双层虚环的连接边,以及内层环与原图的连接边问题,涵盖包括原图中各构型之间不连通时添加虚拟连接边的情况。无论采用何种连接方式,w值均保持恒定。
2.3 原图与新图的结构转换
2.3.1 原图分解至新图的转换步骤
1. 将原图拆解,若原图围内有 N 个节点就能拆解出 N 个变形轮构型,并记录其几何形状;
2. 通过边与辐边的“皮筋伸缩”操作,将变形轮构型还原为标准轮构型;
3. 选取各标准轮构型环上一节点的一侧与边的连接处断开,经边与辐边伸缩形成扇形,使中心节点呈点片状,扇形两端分别为节点端与边端;
(注:中心节点为扇柄中扇钉或点片,辐边为扇骨,环边为扇纸)。
4. 将所有扇形拼接为单中心轮图:扇形一侧节点端与另一扇形一侧边端连接,所有扇形扇柄以点片叠加。
2.3.2 新图还原至原图的转换步骤
1. 从新图环上标记节点分解出 n 个扇形;
2. 将各扇形两端连接,还原为标准轮构型;
3. 按原图变形状态通过部分或全部点边叠加,恢复原图结构,确保新图与原图结构等价。
3. 新单中心轮图的最优着色问题
新单中心轮图的着色规则由环上节点数 n 的奇偶性决定:
当 n = 2m + 1(奇环)时:环上节点用2种颜色交替着色 m 次,剩余1个节点用第3种颜色,中心节点用第4种颜色,总颜色数为 4;
当 n = 2m(偶环)时:环上节点用2种颜色交替着色 m 次,中心节点用第3种颜色,总颜色数为 3。
关键约束:若原图中存在任一奇轮构型模块,则新图即使为偶环也必须采用4色方案,此为保证着色结果能无冲突映射回原图的核心条件。
4. 原图与新图的功能等价性
4.1 原图到新图的功能保持
原图拆解为 n 个轮构型后,若各中心节点颜色存在差异,选取占比最多的颜色作为新图中心颜色,其余轮构型通过环上对应节点颜色与中心节点颜色互换,使所有中心节点颜色统一,确保新图与原图功能等价。
4.2 新图到原图的颜色一致性映射
新图分解为 n 个轮构型时,若中心节点颜色与原图中心颜色冲突,通过新图中心节点颜色与环上对应节点颜色互换,使新图中心节点颜色与原图一致,维持二者功能等价性。
4.3 无冲突场景下的颜色直接替换机制
在原图与新图的双向转换中,当新颜色与其他节点颜色无冲突时,可跳过复杂的颜色互换步骤,直接进行中心颜色替换,简化着色流程。
5. 结论(可分可合,原图新图双向转换结构功能全等价)
本文提出的辐边总和公式借助虚拟环包裹与轮构型转换,把二维平面图简化为单中心轮图,利用轮图着色特性实现四色以内的着色方案。原图与新图的双向转换及功能等价性保证了着色结果的有效性,为平面图着色问题提供了可操作的理论框架。
关键词:二维平面图;辐边总和公式;轮构型;图着色;四色定理


附录一:四色定理结构化证明核心公式体系
本附录是正文所述辐边总和公式体系的精要表述。所有概念与变换均基于五个核心符号:⊙, w, n, m, d。
A.1 核心定义
1. 标准二维平面图:指具有“由外向内至少两层环”结构的连通平面图。其结构由三个参数锁定:
n = m + d, m≥2,d≥2.
n :总节点数。
m :最外围环节点数。
d :第二层环节点数。
2. 辐边总和数w:将图视为轮构型模块叠加时,所有模块辐边数的总和。它是图连接复杂度的核心不变量。
3. 虚拟环标准化:对任意平面图(包括非连通、含孔洞及多面体投影),在其外围添加一个固定的6节点双层虚拟环,将其转化为标准结构。新图参数固定为: m = 3, d = 3, n = n原 + 6 。此操作是“化万为一”的关键。
4. 单中心轮图规模⊙:经上述变换及后续几何操作(轮构型分解、拼接、叠加)后,最终生成的标准单中心轮图的总节点数。其满足:⊙ = 1 + w
注:式中“1”代表轮图唯一的中心节点,它是由原图所有围内节点通过可逆的几何叠加变换生成的等效体。
“w” 代表轮图的环上节点数,等于辐边总和数。
A.2 核心三公式
1. 基础公式 (结构量化):
w = 6(n - m - 1) + (m - d)
适用于标准二维平面图( n = m + d ),刻画其固有结构。
2. 普适公式 (统一计算):
w = 6(n - 4)
经虚拟环标准化后( m=3, d=3 ),对所有平面图成立。它将无限多样的拓扑差异,统一为仅与总节点数n相关的计算。
3. 重构公式 (等价生成):
⊙= 1 + w
由算得的w直接确定等价标准轮图的规模。
A.3 核心结论
经本体系定义的确定性几何变换,任意平面图均与一个总节点数为⊙ = 1 + w的单中心标准轮图在四色着色问题上完全等价。
A.4 体系价值
本体系以三个递进公式,将四色定理的证明转化为对一个明确、可构造、可验证的变换流程的检验。其根本突破在于:通过 “虚拟环标准化” ,用一条统一的计算与变换路径,替代了传统证明中对数千特例构形进行识别、分类与归约的复杂流程。

附录二:四色定理结构化证明术语体系
一、核心定义
1. 标准二维平面图(三角剖分图)
指满足“由外向内至少两层环加中心区域”标准结构的平面图,其中中心区域的节点数≥0。中心区域可包含任意平面子图(含可平面化的立体图)。核心性质为具备点边共享性,即全图可被分解为若干“变形轮构型”基本模块,通过边与辐边的伸缩操作,可将每个变形轮构型转化为标准轮构型。
2. 轮构型
一种以单个中心节点、一个环绕该中心的节点环,以及连接中心与环上每一节点的辐边为核心特征的图结构范式。核心参数为辐边总和数(w),即该构型中所有辐边的总数。
3. 原图轮构型分解
将标准二维平面图(原图)按照其围内节点数拆分为对应数量轮构型模块的操作。其中,围内节点包含中心区域的所有节点,以及第二层及以上环的全部节点。
4. 轮构型模块分解
对单个轮构型模块实施的细分操作。操作流程为:在模块环上任选一个节点,从其单侧断开与环边的连接,通过辐边与环边的伸缩变形,将该模块转化为扇形基本单元。
接口机制:扇形边界形成两类互补接口,构成仿榫卯的插拨耦合关系。
节点端(凹,卯眼):对应原图中节点与边的连接位置,为扇形单元的接收端。
边端(凸,榫头):对应原图中边与节点的连接位置,为扇形单元的插入端。
状态概括:分则为独立扇形单元,合则为完整闭合圆扇。
5. 拼接
将分解所得的扇形单元进行重组的操作。操作方式为依据榫卯接口机制,将各扇形的节点端与相邻扇形的边端精准对接;操作核心为所有扇形的中心节点(扇柄)通过点片叠加,形成新的单中心轮图的中心节点;操作结果为最终生成一个全新的单中心轮图(即标准轮构型)。
6. 虚拟环
为使任意平面图符合“标准二维平面图”形式而引入的固定辅助结构。该结构采用双层环设计,每层包含3个节点,总计6个节点;功能为包裹原图,使其成为新标准图的“中心区域”,进而实现后续证明流程起点的统一与标准化。
7. 轮构型着色规则
针对新单中心轮图(标准轮构型)的着色规则,与一般轮构型着色的核心区别在于:新单中心轮图由原图所有轮构型模块的扇形单元拼接而成,其中心节点是所有扇形单元中心节点的叠加体(非融合体,可拆分回原扇形单元的中心节点),环上节点则是所有扇形单元的环边接口对接后的集合体;而一般轮构型是原图直接分解所得的基础模块,仅包含局部节点与边的结构。
具体着色规则由新单中心轮图环上节点数n的奇偶性决定:
当n=2m+1(奇环)时:环上节点用两种颜色交替着色m次,剩余1个节点用第3种颜色,中心节点用第4种颜色,总颜色数为4。
当n=2m(偶环)时:环上节点用两种颜色交替着色m次,中心节点用第3种颜色,总颜色数为3。
关键约束:若原图中存在任一奇轮构型模块,则新图即使为偶环也必须采用4色方案,此为保证着色结果能无冲突映射回原图的核心条件。
8. 逆映射操作
将新单中心轮图的着色方案通过颜色互换机制映射回原图的操作,确保原图着色不超过四色且无冲突。具体步骤包括:
新图分解:将新图分解为n个轮构型(扇形单元还原为轮构型)。此过程中,新图的中心节点(叠加体)被拆分为各扇形单元原本的中心节点,环上节点也根据接口对接关系还原为各扇形单元的环上节点。
颜色匹配:由于新图中心节点的颜色是统一的(着色规则确定的一种颜色),而原图各轮构型中心节点的颜色可能不同,因此可能存在冲突。若新图中心颜色与原图对应轮构型中心颜色冲突,则通过新图中心节点颜色与环上对应节点颜色互换,使颜色一致。这里需要利用“叠加体”可拆分的特性:在新图分解后,每个扇形单元的中心节点(即原轮构型的中心)可以独立地调整颜色。
结构还原:将轮构型按原图变形状态通过部分或全部点边叠加,恢复原图结构,同时继承调整后的着色方案。

二、体系自洽性说明
1. 概念自洽
所有核心概念(标准二维平面图、轮构型、榫卯接口、虚拟环、着色规则、逆映射等)均围绕“分解-重组-着色-逆映射”的核心变换流程定义,概念间相互支撑、逻辑关联,形成闭环的术语系统。
2. 操作确定
从预处理(添加虚拟环)、一级分解(原图轮构型分解)、二级分解(轮构型模块分解为扇形单元)、重组(拼接生成标准轮构型)、着色(应用轮构型着色规则)到逆映射(将着色方案映射回原图),每一步操作均有明确的几何规则与组合方法界定,具备可重复性与可验证性。
3. 逻辑闭环
虚拟环作为关键的标准化桥梁,将任意输入平面图转化为统一结构的标准二维平面图,确保后续分解-重组流程对所有可平面化图的普遍适用性;重组生成的标准轮构型可通过成熟的轮图着色规则完成四色着色,再经逆映射操作将着色方案无冲突地还原至原图,形成“输入-变换-着色-输出”的完整逻辑链条,直接证明了原图四色着色的存在性。
4. 结论普适
本术语体系为所有可平面化图提供了一套统一、结构化的分析与处理框架,通过明确的操作流程与严谨的概念界定,为四色着色方案的存在性提供了系统性的理论支撑。

三、与四色定理证明的直接对接
本术语体系已完整覆盖四色定理证明的核心环节:
标准化:通过虚拟环将任意平面图转化为标准结构。
分解:将原图拆解为轮构型模块,进一步分解为扇形单元。
重组与着色:将扇形拼接为单中心轮图,应用着色规则完成四色着色。
逆映射:通过颜色互换机制将着色方案映射回原图,证明原图可四色着色。
这一结构化流程为四色定理提供了一个构造性的证明框架,将抽象的图论问题转
化为可操作的几何变换与着色过程。


附录三:辐边总和公式的扩展应用与补充说明
一、标准二维平面图
定义:由外向内两层及以上环加中心区域结构的平面图。
基础公式:w = 6(n - m - 1) + (m - d)
参数与特例同上。
二、非标准二维平面图(含孔洞)
定义:两层及以上环加中心结构,且孔洞为边数≥4的多边形。
修正项 z:
外围孔洞:z外 = N外 - 3v外(N为边数和,v为孔洞个数)
围内孔洞:z内 = 2(N内 - 3v内)
修正公式:w = 6(n - m - 1) + (m - d) - [ (N外 - 3v外) + 2(N内 - 3v内) ]
三、单层外围环加中心区域结构(含孔洞)
理论基准:以三边形为模,理论连接边数 e理论 = 2d - 3(d为围内节点数)。
修正项 z:比较实际连接边数 a 与 e理论(其中a为围内节点连接边数),
若 e理论 < a,则 +z
若 e理论 > a,则 -z
若 e理论 = a,则 z=0
综合公式:w = 6(n - m - 1) + (m - d) ± z - [ (N外 - 3v外) + 2(N内 - 3v内) ]
四、多面体的处理
多面体可经展开、剪面、透视、三角剖分转为二维平面图,并视其结构选用上述公式:
双环+中心:用基础公式。
单层环+中心:用基础公式 ± 修正项z。
无环结构作为子结构均被涵盖。
五、普适公式(覆盖所有类型)
标准和非标准二维平面图,均可通过添加双层虚拟环(总节点6,每层3个)统一处理。
普适公式:w = 6(n新 - 4),其中 n新 = n原 + 6。
六、单层或多层外环加中心区结构(含孔洞)的简化公式
简化公式:w = n + 3d - 4 ± z - [ (N外 - 3v外) + 2(N内 - 3v内) ](d为围内节点数)
修正基准:以树型为模,理论连接边数 e理论 = d - 1(d为围内节点数)。
修正项 z:比较实际连接边数 a 与 e理论(其中a为围内节点连接边数),
若 e理论 < a,则 +z
若 e理论 > a,则 -z
若 e理论 = a,则 z=0

重要提示:本公式体系仅适用于平面图,对于Kn全阶图(如K5、K3,3等非平面图)不适用。

附录四:辅助计算公式
设 n 为节点数,m 为外围节点数。
三边形个数:a = (n - 2) + (n - m)
边的个数:e = 2n + (n - m - 3)





您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-12-21 05:05 , Processed in 0.075393 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表