数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3024|回复: 3

【重要提议】应解释出该命题最原始最根本之原因!!

[复制链接]
发表于 2010-4-26 11:02 | 显示全部楼层 |阅读模式
【重要提议】应解释出该命题最原始最根本之原因!!
《至今有谁人能解释"偶数值增大时素数对值忽高忽低"吗?》已讨论了一年有余,众多网友讨论所得的数据或所谓的“求素数对公式”都不过是证实了偶数值增大时存在着素数对值忽高忽低的情况,而绝对不是造成"偶数值增大时素数对值忽高忽低"的最原始最根本之原因。
   造成"偶数值增大时素数对值忽高忽低"的最原始最根本之原因必须是讨论如下一种形式:
设一大偶数为A,则大偶数A可表示成两个相同的有限奇数数列反向相对,得到若干对奇数相对形式,即每相对的两奇数相加都等于A,我们把这一形式称为偶数A的表示式。具体形式如下:
   
   3       5       7       9    ······ (2n-5)  (2n-3)  (2n-1)  (2n+1)   
   +       +       +       +    ······   +       +       +       +
(2n+1) (2n-1)  (2n-3)  (2n-5) ······    9       7       5       3   

   在上形式中的相对的两奇数数列中只存在有等量的合数与质数,则存在有合数对合数,合数对质数,质数对质数这三种情况。那么我们应讨论的是:在什么样的情况下质数对质数的形式最多,在什么样的情况下质数对质数的形式最少??这才是造成"偶数值增大时素数对值忽高忽低"的最原始最根本之原因!
   显然,这一讨论直接关系到质数或其合数在奇数数列中是如何分布的问题!
   这一讨论也直接关系到哥德巴赫猜想问题!
   则希望网友们认真讨论这一形式!
 楼主| 发表于 2010-4-26 11:22 | 显示全部楼层

【重要提议】应解释出该命题最原始最根本之原因!!

补充:上贴中偶数A表示式中的n为自·然数1,2,3,4,5,······
发表于 2010-4-26 12:59 | 显示全部楼层

【重要提议】应解释出该命题最原始最根本之原因!!

[这个贴子最后由沟道效应在 2010/04/27 00:07am 第 3 次编辑]

````其实,88290779(周明祥)在《至今有谁人能解释"偶数值增大时素数对值忽高忽低"吗?》的98楼,有跟贴已揭示出这一现象的内原。跟贴原文是//
````一句话,写偶数2N的(1+1)含量为G(2N),以下述估算式的取整值表示
````````````````k```````1∨2```````````1∨2``3∨4``5∨6``9∨10```````(`k `P-2)∨(`k `P-1)
G(2N)≈(N-2)× ∏ (1 -——)=(N-2)× ——×——×——×———×…×———————————
`````````````1`P=3`````` P``````````````3`````5`````7`````11`````````````````k `P
去判定就得:由于连乘积各项分子据2N是否含有小于√2N的质因数为据,有(`k `P-2)与(`k `P-1)取值不同的内在差别,就造成成2N进行性增大,相邻偶数(1+1)含量忽高忽低乃至于有2、3、4倍的差异。//

````又当2N>2310后,表达式系数取(N-2)与取N所产生误差可以忽略。故鄢福荣据此作有一验证表,
已发布于本栏网文《关于正奇数的分类定义的再认识》之第8楼,今某将其改撰后移来此处,权作上述
引用之验证——
````用联分等式的“连乘积”乘“谱列数N”表示32组排列的G(2N)计算与实迹间误差登记表
`````2N```````2N含``````2N含```````2N``````含`````“1+1”```````数```````列``````````````````````2N 含“1+1”
`````的```````孪生```````vP````````的``````用公式表述总`````````````````````````````````````````````的实迹数
`````值```````质数``````因 数``````总````````列数的`````简易````````````````````````````````````````与`计算数
`````及```````实迹```````的````````列`````````````````计算程式`````及```````````````````````````````取整值间
表````述```````数````展``````示````数``````````````````````````````````````取整值`````````````````````的误差记录
5750=2×2875```130````5``23````````164`````2875×2153221785000/36654989450461=168````````````````````-4
5752=2×2876```130``````````````````144````2876×1541511050625/36654989450461=120`````````````````````22
5754=2×2877```130 ```3``7``````````312````2877×3699626521500/36654989450461=290`````````````````````22
5756=2×2878```130``````````````````134````2878×1541511050625/36654989450461=121`````````````````````13
5758=2×2879```130``````````````````131````2879×1541511050625/36654989450461=121`````````````````````10
5760=2×2880```130```3``5```````````330````2880×4110696135000/36654989450461=322``````````````````````8
5762=2×2881```130`````43``67```````130````2881×65739517420500/1502854567468901=125```````````````````5
5764=2×2882```130`````11```````````152````2882×1712790056250/36654989450461=134`````````````````````18
5766=2×2883```130```3```31`````````254````2883×92490663037500/1062994694063369=250```````````````````4
5768=2×2884```130```````7``````````146````2884×1849813260750/36654989450461=145``````````````````````1
5770=2×2885```130`````5````````````168````2885×2055348067500/36654989450461=161``````````````````````7
5772=2×2886```130```3``13``37``````274````2886×38053301364000/403204883955071=272````````````````````2
5774=2×2887```130``````````````````121````2887×1541511050625/36654989450461=121``````````````````````0
5776=2×2888```130```````19````````122````2888×1632188171250/36654989450461=128````````````````````-6
5778=2×2889```130```3`````````````252````2889×3083022101250/36654989450461=242`````````````````````10
5780=2×2890```130````5``17``59````172````2890×37676306304000/696444799558759=156```````````````````16
5782=2×2891```130```````7`````````148````2891×1849813260750/36654989450461=145``````````````````````3
5784=2×2892```130```3`````````````258````2892×3083022101250/36654989450461=243``````````````````````5
5786=2×2893```130`````````11``````142````2893×1712790056250/36654989450461=135``````````````````````7
5788=2×2894```130`````````````````124````2894×1541511050625/36654989450461=121``````````````````````3
5790=2×2895```130```3``5``````````328````2895×4110696135000/36654989450461=324``````````````````````4
5792=2×2896```130`````````````````122````2896×1541511050625/36654989450461=121``````````````````````1
5794=2×2897```130`````````````````125````2897×1541511050625/36654989450461=121``````````````````````4
5796=2×2898```130```3```7```23````326````2898×38757999213000/36654989450461=306````````````````````20
5798=2×2899```130`````````13`````138````2899×18498132607500/403504883955071=132````````````````````6
5800=2×2900```130`````5```29`````188````2900×2131472070000/36654989450461=168`````````````````````20
5802=2×2901```130```3````````````254````2901×3083022101250/36654989450461=243`````````````````````11
5804=2×2902```130````````````````132````2902×1541511050625/36654989450461=122`````````````````````10
5806=2×2903```130````````````````125````2903×1541511050625/36654989450461=122`````````````````````3
5808=2×2904```130```3````11``````276````2904×3425580112500/36654989450461=271`````````````````````5
5810=2×2905```130`````5``7```````196````2905×2466417681000/36654989450461=195`````````````````````1
5812=2×2906```130````````````````128````2906×1541511050625/36654989450461=122`````````````````````6
 楼主| 发表于 2010-4-27 07:26 | 显示全部楼层

【重要提议】应解释出该命题最原始最根本之原因!!

HXW-L及网友们再次注意!
    《至今有谁人能解释"偶数值增大时素数对值忽高忽低"吗?》之问如同《至今有谁人能解释“月亮在天空出现忽圆忽缺”吗?》之问。
    本人已多次指出:《至今有谁人能解释"偶数值增大时素数对值忽高忽低"吗?》已讨论了一年有余,众多网友讨论所得的数据或所谓的“求素数对公式”都不过是证实了偶数值增大时存在着素数对值忽高忽低的情况,而绝对不是造成"偶数值增大时素数对值忽高忽低"的最原始最根本之原因。这如同讨论所得的月亮圆缺是29天或30天或更精确的时间一样,都不过是证实了月亮在天空出现忽圆忽缺的情况,而绝对不是造成月亮在天空出现忽圆忽缺的最原始最根本之原因。
    月亮在天空出现忽圆忽缺的最原始最根本之原因关联到太阳,地球,月亮三者各自的位置,运行方式及各自的运行周期等多种因素造成的,绝不是三言两语就可解释的!
同理,偶数值增大时素数对值忽高忽低的最原始最根本之原因也绝不是三言两语就可解释的!
    因此,本人特建《【重要提议】应解释出该命题最原始最根本之原因!!》之主题贴!请注意以后分层次的讨论之论述。
    亲爱的HXW-L及网友们,你们清楚了吗?!
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-17 06:48 , Processed in 0.080383 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表