|

楼主 |
发表于 2025-8-19 09:54
|
显示全部楼层
帖子重发
楼主| 发表于 2017-6-10 08:56 | 只看该作者
WHS筛法,可以一次筛出252000个自然数区间内全部素数。如[101606400000002,101606400252001]筛出7863个素数,(见数学中国,基础数学,2013-7-26 [101606400000002,101606400252001]区间的素数)用这些素数和其它素数组合,可以验证比101606400252001大的偶数,如我以前发表过的60万个连续偶数,哥德巴赫猜想都成立,可以验证在验证范围内的任何偶数,或任何区间的偶数哥德巴赫猜想成立,验证的范围比2*101606400252001数值稍小,比如我用[101606400000002,101606400252001]的7863个素数,验证了三个相邻偶数哥德巴赫猜想都成立。
203212800252004偶数有180个素数对,
203212800252006偶数有354个素数对
203212800252008偶数有153个素数对
203212800252008素数对如下:
101606400000529 + 101606400251479
101606400000709 + 101606400251299
101606400001621 + 101606400250387
101606400001699 + 101606400250309
101606400001957 + 101606400250051
101606400004069 + 101606400247939
101606400004129 + 101606400247879
101606400004237 + 101606400247771
101606400005611 + 101606400246397
101606400006169 + 101606400245839
101606400008167 + 101606400243841
101606400009847 + 101606400242161
101606400010267 + 101606400241741
101606400010309 + 101606400241699
101606400011401 + 101606400240607
101606400011539 + 101606400240469
101606400011581 + 101606400240427
101606400012049 + 101606400239959
101606400013801 + 101606400238207
101606400013957 + 101606400238051
101606400014311 + 101606400237697
101606400014467 + 101606400237541
101606400014797 + 101606400237211
101606400017761 + 101606400234247
101606400019897 + 101606400232111
101606400020071 + 101606400231937
101606400020101 + 101606400231907
101606400021487 + 101606400230521
101606400022651 + 101606400229357
101606400026101 + 101606400225907
101606400026437 + 101606400225571
101606400026737 + 101606400225271
101606400027247 + 101606400224761
101606400028039 + 101606400223969
101606400028117 + 101606400223891
101606400030529 + 101606400221479
101606400031831 + 101606400220177
101606400032491 + 101606400219517
101606400033199 + 101606400218809
101606400034801 + 101606400217207
101606400036067 + 101606400215941
101606400036187 + 101606400215821
101606400038029 + 101606400213979
101606400038257 + 101606400213751
101606400038839 + 101606400213169
101606400039709 + 101606400212299
101606400040771 + 101606400211237
101606400041197 + 101606400210811
101606400041689 + 101606400210319
101606400042247 + 101606400209761
101606400044977 + 101606400207031
101606400045379 + 101606400206629
101606400045967 + 101606400206041
101606400047707 + 101606400204301
101606400048211 + 101606400203797
101606400049009 + 101606400202999
101606400050671 + 101606400201337
101606400051217 + 101606400200791
101606400051979 + 101606400200029
101606400052189 + 101606400199819
101606400052357 + 101606400199651
101606400052999 + 101606400199009
101606400053869 + 101606400198139
101606400053959 + 101606400198049
101606400057187 + 101606400194821
101606400058279 + 101606400193729
101606400058417 + 101606400193591
101606400059701 + 101606400192307
101606400060421 + 101606400191587
101606400060787 + 101606400191221
101606400060799 + 101606400191209
101606400061249 + 101606400190759
101606400062017 + 101606400189991
101606400063349 + 101606400188659
101606400064231 + 101606400187777
101606400064459 + 101606400187549
101606400065089 + 101606400186919
101606400065971 + 101606400186037
101606400066097 + 101606400185911
101606400066247 + 101606400185761
101606400067951 + 101606400184057
101606400069367 + 101606400182641
101606400071299 + 101606400180709
101606400071887 + 101606400180121
101606400071977 + 101606400180031
101606400072721 + 101606400179287
101606400073831 + 101606400178177
101606400075457 + 101606400176551
101606400075577 + 101606400176431
101606400076369 + 101606400175639
101606400076501 + 101606400175507
101606400077227 + 101606400174781
101606400077527 + 101606400174481
101606400078607 + 101606400173401
101606400079369 + 101606400172639
101606400081211 + 101606400170797
101606400081259 + 101606400170749
101606400081877 + 101606400170131
101606400082171 + 101606400169837
101606400082567 + 101606400169441
101606400082639 + 101606400169369
101606400083269 + 101606400168739
101606400083299 + 101606400168709
101606400083437 + 101606400168571
101606400085651 + 101606400166357
101606400087721 + 101606400164287
101606400089239 + 101606400162769
101606400090319 + 101606400161689
101606400090571 + 101606400161437
101606400092521 + 101606400159487
101606400093361 + 101606400158647
101606400094117 + 101606400157891
101606400094327 + 101606400157681
101606400095281 + 101606400156727
101606400095491 + 101606400156517
101606400095869 + 101606400156139
101606400096217 + 101606400155791
101606400097141 + 101606400154867
101606400097297 + 101606400154711
101606400097729 + 101606400154279
101606400098317 + 101606400153691
101606400099319 + 101606400152689
101606400099427 + 101606400152581
101606400100237 + 101606400151771
101606400100831 + 101606400151177
101606400101149 + 101606400150859
101606400102199 + 101606400149809
101606400102301 + 101606400149707
101606400102751 + 101606400149257
101606400103801 + 101606400148207
101606400104617 + 101606400147391
101606400108121 + 101606400143887
101606400108457 + 101606400143551
101606400109549 + 101606400142459
101606400110239 + 101606400141769
101606400110539 + 101606400141469
101606400112879 + 101606400139129
101606400113521 + 101606400138487
101606400114277 + 101606400137731
101606400114529 + 101606400137479
101606400117577 + 101606400134431
101606400117667 + 101606400134341
101606400117757 + 101606400134251
101606400119527 + 101606400132481
101606400120829 + 101606400131179
101606400121189 + 101606400130819
101606400121741 + 101606400130267
101606400121819 + 101606400130189
101606400122737 + 101606400129271
101606400122797 + 101606400129211
101606400124147 + 101606400127861
101606400124609 + 101606400127399
101606400124939 + 101606400127069
上面的实例说明了,如果找到区间[2,101606400252001]的全部素数,就可以验证[6,
203212820052008]全部偶数哥德巴赫猜想都成立。即有[2,N]的素数集合,就可以验证[6,P] 区间的全部偶数哥德巴赫猜想都成立。(P为略小于2N的偶数)
上面的数据和论述如有不当之处,望数学共同体予以指正。
与不少数学猜想一样,数值上的验证也是哥德巴赫猜想的重要一环。1938年,尼尔斯·皮平(Nils Pipping)验证了所有小于的偶数[17]。1964年,M·L·斯坦恩和P·R·斯坦恩验证了小于的偶数[18],1989年,A·格兰维尔将验证范围扩大到[19]。1993年,Matti K. Sinisalo验证了以内的偶数[20]。2000年,Jörg Richstein验证了以内的偶数[21]。至2012年2月为止,数学家已经验证了以内的偶数[22],在所有的验证中,没有发现偶数哥德巴赫猜想的反例。————————摘自维基百科。 |
|