\(n=\bigg(\big\lfloor\frac{n}{6}\big\rfloor + 1 - x\bigg)^3 +\bigg (\big\lfloor\frac{n}{6}\big\rfloor - 1 - x\bigg)^3+ \bigg(-\big\lfloor\frac{n}{6}\big\rfloor + x\bigg)^3 + \bigg(-\big\lfloor\frac{n}{6}\big\rfloor + x\bigg)^3 + \bigg(Mod[n, 6] - 6\big\lfloor\frac{Mod[n, 6]}{4}\big\rfloor\bigg)^3\)
\(x=\big\lfloor\frac{Mod[n, 6]}{2}\big\rfloor + 3\big\lfloor\frac{Mod[n, 6]}{3}\big\rfloor - 7\big\lfloor\frac{Mod[n, 6]}{4}\big\rfloor +\big \lfloor\frac{Mod[n, 6]}{5}\big\rfloor\)
只要一串数就够了——{-1, -1, -2, -5, 1, 0, 0, 0, -1, -4, 2, 1, 1, 1, 0, -3, 3, 2, 2, 2, 1, -2, 4, 3, 3, 3, 2, -1, 5, 4, 4, 4, 3, 0, 6, 5, 5, 5, 4, 1, 7, 6, 6, 6, 5, 2, 8, 7, 7, 7, 6, 3, 9, 8, 8, 8, 7, 4, 10, 9, 9, 9, 8, 5, 11, 10, 10, 10, 9, 6, 12, 11, 11, 11, 10, 7, 13}
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {-1, -1, -2, -5, 1, 0, 0}, 90] |