数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 4888|回复: 3

陆启铿的去世,根本不值得一提。倪则均,2015年9月1日。

[复制链接]
发表于 2015-9-1 05:57 | 显示全部楼层 |阅读模式
今天科学网发表了武际可的博文“陆启铿先生千古”,还是有些可读之处,例如武说:1959年,北大数学系想请数学所华罗庚先生到数学系开设多复变函数课,华罗庚先生便委托陆启铿先生去北大讲这个课。陆启铿先生回忆那一段情形时说:“大跃进时代的1959年,我受华罗庚先生委托,接受了程民德先生邀请到北京大学数学系为五年级学生开一个多复变函数课程的任务。运动一来,北大提出了“打倒欧家店,火烧柯西楼”的口号,多复变也有柯西公式,因而也被波及。学生们质问我,多复变是如何产生的。我说最初是由推广单复变数的一些结果产生的。学生们问,多复变有什么实际应用,我说到目前为止还不知道。学生们说,毛主席教导我们说,真正的理论是从实际中来,又可以反过来指导实际,多复变违反了毛主席对理论的论述,它不是科学的理论;换句话说,是伪科学。我受到很大的压力。回到数学所,听到张宗燧先生说,多复变函数正在应用于量子场论色散关系的证明。我大喜过望。”
多复变确实是单复变数的推广,而单复变数则源自于高斯,荒谬的运用复数去推导,分拆一个数为二平方和的表法公式。因此多复变函数,其根本全是错的。当然,如果真的能应用于量子场论色散关系,又将别论了,但是并不能以此来掩盖高斯的荒谬。希望luyuanhong能解释得更透彻一些。我觉得北大提出了“打倒欧家店,火烧柯西楼”的口号,不但不错,而且非常正确,可惜正确的东西没有生根发芽,错误的理论却在到处横行霸道。数学不知何时才能返回正道。
发表于 2015-9-1 21:52 | 显示全部楼层
这个倪则均先生,胆子可真够大的,竟然敢反对数学院士{:soso_e113:}
发表于 2015-9-25 16:36 | 显示全部楼层
就是,院士可不能反对。
发表于 2015-9-25 16:54 | 显示全部楼层
就是,反对院士可不好。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-4 09:46 , Processed in 0.097341 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: