|
本帖最后由 王守恩 于 2021-2-2 12:16 编辑
重要(链消!!!)的话重复一遍。
\(我们有:\frac{1}{a*b}=\frac{a+b}{a*b*(a+b)}=\frac{b}{a*b*(a+b)}+\frac{a}{a*b*(a+b)}=\frac{1}{a*(a+b)}+\frac{1}{b*(a+b)}\)
\(n=2:\frac{1}{1*03}=\frac{1}{1*04}+\frac{1}{03*04}\)
\(n=3:\frac{1}{1*05}=\frac{1}{1*06}+\frac{1}{05*06},\frac{1}{2*04}=\frac{1}{2*06}+\frac{1}{04*06}\)
\(n=4:\frac{1}{1*07}=\frac{1}{1*08}+\frac{1}{07*08},\frac{1}{2*06}=\frac{1}{2*08}+\frac{1}{06*08},\frac{1}{3*05}=\frac{1}{3*08}+\frac{1}{5*08}\)
\(n=5:\frac{1}{1*09}=\frac{1}{1*10}+\frac{1}{09*10},\frac{1}{2*08}=\frac{1}{2*10}+\frac{1}{08*10},\frac{1}{3*07}=\frac{1}{3*10}+\frac{1}{07*10},\frac{1}{4*06}=\frac{1}{4*10}+\frac{1}{06*10}\)
\(n=6:\frac{1}{1*11}=\frac{1}{1*12}+\frac{1}{11*12},\frac{1}{2*10}=\frac{1}{2*12}+\frac{1}{10*12},\frac{1}{3*09}=\frac{1}{3*12}+\frac{1}{09*12},\frac{1}{4*08}=\frac{1}{4*12}+\frac{1}{08*12},\frac{1}{5*7}=\frac{1}{5*12}+\frac{1}{7*12}\)
\(n=7:\frac{1}{1*13}=\frac{1}{1*14}+\frac{1}{13*14},\frac{1}{2*12}=\frac{1}{2*14}+\frac{1}{12*14},\frac{1}{3*11}=\frac{1}{3*14}+\frac{1}{11*14},\frac{1}{4*10}=\frac{1}{4*14}+\frac{1}{10*14},\frac{1}{5*9}=\frac{1}{5*14}+\frac{1}{9*14}\) |
|