数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3434|回复: 1

SOLVED

[复制链接]
发表于 2019-4-13 06:41 | 显示全部楼层 |阅读模式
本帖最后由 dodonaomikiki 于 2019-6-24 11:07 编辑

S罗氏几何,真的是一种想象性的虚幻几何吗?
___________________________________________
以下是百度资料




第五公设是论及平行线的,它说的是:如果一直线和两直线相交,且所构成的两个同侧内角之和小于两直角,那么,把这两直线延长,它们一定在那两内角的一侧相交。数学家们并不怀疑这个命题的真实性,而是认为它无论在语句的长度,还是在内容上都不大像是个公设,而倒像是个可以证明的定理,只是由于欧几里得没能找到它的证明,才不得不把它放在公设之列。
为了给出第五公设的证明,完成欧几里得没能完成的工作,自公元前3世纪起到19世纪初,数学家们投入了无穷无尽的精力,他们几乎尝试了各种可能的方法,但都遭到了失败。
罗巴切夫斯基是从1815年着手研究平行线理论的。开始他也是循着前人的思路,试图给出第五公设的证明。在保存下来的他的学生听课笔记中,就记有他在1816~1817学年度在几何教学中给出的一些证明。可是,很快他便意识到自己的证明是错误的。
前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明。于是,他便调转思路,着手寻求第五公设不可证的解答。这是一个全新的,也是与传统思路完全相反的探索途径。罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现了一个崭新的几何世界。
 楼主| 发表于 2019-4-14 13:41 | 显示全部楼层
现在,我感受到:
罗几相对来说,实在太高大上、太帅气的几何
让人类走向星辰大海~~~犹如仙女一样的几何

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-8-5 21:57 , Processed in 0.081422 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表