[这个贴子最后由cjsh在 2011/07/08 00:10pm 第 2 次编辑]
5
交换环的两子环为交换环,但单位元不同例:
方阵ZN*N的子环Z5*5:
Z:=IntegerRing() ;
Z;
X := Matrix(Z, [[a,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
单位元为:
X := Matrix(Z, [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
验:
Z:=IntegerRing() ;
Z;
X := Matrix(Z, [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
Parent(X);
X1 := Matrix(Z, [[4,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X1;
X2 := Matrix(Z, [[3,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X2;
X2*X eq X2;
X*X1 eq X1;
Parent(X);
Integer Ring
[1 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
Full Matrix Algebra of degree 5 over Integer Ring
[4 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[3 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
true
true
Full Matrix Algebra of degree 5 over Integer Ring
单位元和上面不同,还是上面子环的扩环:
Y := Matrix(Z, [[a,0,0,0,0],[0,a,0,0,0],[0,0,a,0,0],[0,0,0,a,0],[0,0,0,0,a]]);
> Y;
S := ScalarMatrix(5, 1);
> S;
S1 := ScalarMatrix(5, 2);
> S1;
S2 := ScalarMatrix(5, 3);
> S2;
S3 := ScalarMatrix(5, 4);
> S3;
S*S1 eq S1;
S*S2 eq S2*S;
S*S3 eq S3;
S := ScalarMatrix(5, 1);
> S;
S1 := ScalarMatrix(5, 2);
> S1;
S2 := ScalarMatrix(5, 3);
> S2;
S3 := ScalarMatrix(5, 4);
> S3;
S*S1 eq S1;
S*S2 eq S2*S;
S*S3 eq S3;
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[2 0 0 0 0]
[0 2 0 0 0]
[0 0 2 0 0]
[0 0 0 2 0]
[0 0 0 0 2]
[3 0 0 0 0]
[0 3 0 0 0]
[0 0 3 0 0]
[0 0 0 3 0]
[0 0 0 0 3]
[4 0 0 0 0]
[0 4 0 0 0]
[0 0 4 0 0]
[0 0 0 4 0]
[0 0 0 0 4]
true
true
true
|