数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3595|回复: 2

环 ,子环,单位元,零因子

[复制链接]
发表于 2011-7-8 11:07 | 显示全部楼层 |阅读模式
[这个贴子最后由cjsh在 2011/07/08 11:19am 第 1 次编辑] 1 有单位元1的环 ,子环------(无零因子-------交换--------整环------整数环----和子环的商群为U(m)群) Z和Z/: Z:=IntegerRing() ; Z; ZS20:=sub< Z | 20 > ; ZS20; I5 := ideal< Z | 5 >; > I5; ZQ:=quo< Z | I5 > ; ZQ; quo< Z | 5 > ; Set(ZQ); Degree(I5); Generator(I5); Integer Ring Ideal of Integer Ring generated by 20 Ideal of Integer Ring generated by 5 Residue class ring of integers modulo 5 Residue class ring of integers modulo 5 Mapping from: RngInt: Z to RngIntRes: ZQ { 0, 1, 2, 3, 4 } 1 5 2 无单位元1的环 ,子环------(无零因子---交换) 2Z,4Z,8Z..... 3 单位元1的交换环 ,交换子环 凡有限域都是 F:=FiniteField(131, 9); F; sub; Finite field of size 131^9 Finite field of size 131^3 Mapping from: GF(131^3) to FldFin: F 4 单位元1的非交换环 ,却有交换子环 四元数环,(体,斜域),复数a1+bi为其子环(域) [br][br][color=#990000]-=-=-=-=- 以下内容由 cjsh 时添加 -=-=-=-=- 环同态核: F(r)=0 幂零元: a^N=0 幂等元: a^2=a 诣零根: RAD R=所有幂零元构成一理想 [br][br]-=-=-=-=- 以下内容由 cjsh 时添加 -=-=-=-=- 在判断环同态时幂等元很有用
 楼主| 发表于 2011-7-8 11:25 | 显示全部楼层

环 ,子环,单位元,零因子

[这个贴子最后由cjsh在 2011/07/08 00:10pm 第 2 次编辑]

5
交换环的两子环为交换环,但单位元不同例:
方阵ZN*N的子环Z5*5:
Z:=IntegerRing() ;
Z;
X := Matrix(Z, [[a,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
单位元为:
X := Matrix(Z, [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
验:
Z:=IntegerRing() ;
Z;
X := Matrix(Z, [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X;
Parent(X);
X1 := Matrix(Z, [[4,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X1;
X2 := Matrix(Z, [[3,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> X2;
X2*X eq X2;
X*X1 eq X1;
Parent(X);

Integer Ring
[1 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
Full Matrix Algebra of degree 5 over Integer Ring
[4 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[3 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
true
true
Full Matrix Algebra of degree 5 over Integer Ring

单位元和上面不同,还是上面子环的扩环:
Y := Matrix(Z, [[a,0,0,0,0],[0,a,0,0,0],[0,0,a,0,0],[0,0,0,a,0],[0,0,0,0,a]]);
> Y;
S := ScalarMatrix(5, 1);
> S;
S1 := ScalarMatrix(5, 2);
> S1;
S2 := ScalarMatrix(5, 3);
> S2;
S3 := ScalarMatrix(5, 4);
> S3;
S*S1 eq S1;
S*S2 eq S2*S;
S*S3 eq S3;

S := ScalarMatrix(5, 1);
> S;
S1 := ScalarMatrix(5, 2);
> S1;
S2 := ScalarMatrix(5, 3);
> S2;
S3 := ScalarMatrix(5, 4);
> S3;
S*S1 eq S1;
S*S2 eq S2*S;
S*S3 eq S3;
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[2 0 0 0 0]
[0 2 0 0 0]
[0 0 2 0 0]
[0 0 0 2 0]
[0 0 0 0 2]
[3 0 0 0 0]
[0 3 0 0 0]
[0 0 3 0 0]
[0 0 0 3 0]
[0 0 0 0 3]
[4 0 0 0 0]
[0 4 0 0 0]
[0 0 4 0 0]
[0 0 0 4 0]
[0 0 0 0 4]
true
true
true
 楼主| 发表于 2011-7-8 12:09 | 显示全部楼层

环 ,子环,单位元,零因子

6
交换环和其子环都无单位元
X := Matrix(Z, [[a,0,0,0,0],[a,0,0,0,0],[a,0,0,0,0],[a,0,0,0,0],[a,0,0,0,0]]);
> X;
无单位元
Y := Matrix(Z, [[a,0,0,0,0],[a,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]);
> Y;
无单位元
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-10 07:18 , Processed in 0.082903 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表