数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 5275|回复: 3

[公告和求助]接到论文入选国际会议通知!紧急求助高手指导算法!非常感谢!

[复制链接]
发表于 2006-6-25 18:58 | 显示全部楼层 |阅读模式
我的文章请点击:
http://preprint.nstl.gov.cn/newprint/search/result.jsp?d=fileinfo&flag=sear&r=1142671836850
已经接到论文入选国际会议通知
Dear ADG contributor: it is my pleasure to inform you that the PC
Committee has decided to accept your contribution.  Attached please
find the referees'; reports.
As described in the call for papers (see
http://webs.uvigo.es/adg2006/cfp.html ), all accepted contributions
will be published as an internal working document that will be handled
to the participants at the meeting.
For this purpose we urge you to
-revise your contribution according to the referees'; suggestions
-follow strictly the guidelines for publication as established in
http://webs.uvigo.es/adg2006/cfp.html , ie. follow the standard
Springer Proceedings format (llncs2e.cls, etc.).
This is crucial for the coherence of the internal working document
(page numbers, author index, style, etc). we have referred to.
NO Word files, etc., please.
-send your revised and formatted file (SOURCE file and EPS of figures)
to adg2006#@uvigo.es before JUNE 30.

Do not forget to register in ADG and to take care of your hotel
reservation (as soon as possible: there is a deadline for  a number of
rooms pre-reserved for the ADG), see
http://webs.uvigo.es/adg2006/index.html

Thanks again.
See you in Pontevedra.
Tomas Recio
请看外国专家的意见:
Paper Info
----------
  Paper ID       : 14
  Paper Title    : The technique for conjugate ratio for geometric theorem proving
  
Evaluation
----------
  Use the following scheme:
       Y = Yes, acceptable  
       N = No,  not acceptable.
     
  Scope         : Y
  Originality   : Y
  Presentation  : Y
  Overall       : Y
   
Comments to the author
=================================================
Paper Info
----------
  Paper ID: 14
  Paper Title:  The Technique of Conjugate Ratio for Geometric Theorem Proving
  
Evaluation
----------
  Use the following scheme:
       Y = Yes, acceptable  
       N = No, not acceptable.
     
  Scope: Y
  Originality: Y
  Presentation: Y
  Overall:  Y
   
Comments to the author
----------------------
This is an interesting approach to GTP based on complex numbers.  The description of the technique is clear and readable, with plenty of worked-out examples.  It would be nice if the author could give an idea of the number of examples that have been proved with this approach along with timings (to enable us to gauge its efficiency, for instance). Also, there should be some (more detailed) comparison of the relative merits of this method with respect to other approaches, especially those that can produce readable proofs of similar results.  The longer term plans for this project, if any, should be outlined.
======================================================

Paper Info
----------
  Paper ID       : 14
  Paper Title    : The Technique of Conjugate Ratio
                   for Geometric Theorem Proving
  
Evaluation
----------
  Use the following scheme:
       Y = Yes, acceptable  
       N = No,  not acceptable.
     
  Scope         : Y-
  Originality   : Y-
  Presentation  : Y
  Overall       : Y
   
Comments to the author
----------------------
The proposed talk will demonstrate how to exploit the use of complex
numbers in automatic theorem proving. For this the author first sets up
several geometric primitive operations, like angle measurement, co-linearity, co-circularity, etc. and expresses these primitives as relations between
suitably chosen complex parameters. Here in particular the use of complex
conjugates is important to derive as relatively simple ratio formulas.
Later in the extended abstract it is shown how these complex expressions
can be used to derive relatively simple proofs of planar geometric theorems
involving circles, points and lines.
For me it is not clear how the proposed formulas can be used to automatically
deduce proofs for geometric theorems, since the author does not provide any
algorithmic methods how the primitive formulae are combined. Still he presents
a few nice examples where with his parameterizations nice proofs for geometric
theorems can be written. It is not clear, wheter these proves were found by hand
or automatically. One of the examples makes use of Mathematica, but there only
the "Solve" and "Simplify" routines were used.
Still I recommend the paper for presentation at the ADG, since at least nice
algebraic approaches are presented. It would be nice to see how these approaches
can be used in an automatic deduction system.

=========================================================
Paper Info
----------
  Paper ID       :
  Paper Title    :  Technique of Conjugate Ratio for Geometric Theorem Proving
Evaluation
----------
  Use the following scheme:
       Y = Yes, acceptable   
       N = No,  not acceptable.
  Scope         :   Y
  Originality   :   Y
  Presentation  :   Y
  Overall       :  marginal
Comments to the author
----------------------
The paper discusses the use of vector ration and conjugate
ratio for geometry theorem proving.
I liked the content of the paper very much.
I would have liked to see the comparison of the proposed
approach with the vector method, area method and other related method.
The abstract claims that the method generates readable proofs. I did not
see any evidence of that in the paper. Perhaps the presentation can focus
on that issue.
根据外国专家的评论,中国科学院一位研究员提出意见:
离开会还有较长时间,请对您的工作的“机器实现算法“,和与其他可读证明算法的比较,进行完善(如没有则努力完成之)。
我没有选择审理您的报告(需要避嫌)。从三位审理意见,您的工作得到很好的评价。
只有在以上两个问题上有清楚的工作,您的贡献才能被正确评价。
另:他们询问你的通信地址,请及时告知。如你有财力困难,可以向他们申请免除注册费。
请到五楼查看文章地址。
会议八月召开,请求高手们指导算法,非常感谢!




发表于 2006-6-26 08:38 | 显示全部楼层

[公告和求助]接到论文入选国际会议通知!紧急求助高手指导算法!非常感谢!

接到了论文入选国际会议通知,的確值得慶賀!!!!!!!!!
 楼主| 发表于 2006-6-30 18:25 | 显示全部楼层

[公告和求助]接到论文入选国际会议通知!紧急求助高手指导算法!非常感谢!

感谢无言网友。
发表于 2010-6-8 06:05 | 显示全部楼层

[公告和求助]接到论文入选国际会议通知!紧急求助高手指导算法!非常感谢!

俞根强,不愧为俞家好子孙---------
俞根强,爱数学;创立----夭折了------新道学;重创了俞家荣耀;

老天有眼,不让俞氏荣耀湮灭,,,给了俞根强闹蠢货的使命,,,

为了俞家的闹蠢货荣耀,,,,蠢货闹得,,,忍气吞声,,,,
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-26 11:49 , Processed in 0.086296 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表