|
|
设 Δ 为 ΔABC 的面积,证明:cotA=(b^2+c^2-a^2)/(4Δ),a^2+b^2+c^2≥4√3Δ
|
(4)
由(3)的证明知
cotA+cotB+cotC=(a^2+b^2+c^2)/(4△)
即
(a^2+b^2+c^2)=4(cotA+cotB+cotC)△
于是,本题等价于证明
cotA+cotB+cotC>=√3
引理1 三角形ABC中,tgA+tgB+tgC=tgA×tgB×tgC
证明:
tgA+tgB+tgC
=sinA/cosA+sinB/cosB+sinC/cosC
=(cosBsinA+sinBcosA)/(cosAcosB)+sinC/cosC
=sin(A+B)/(cosAcosB)+sinC/cosC
=sinC/(cosAcosB)+sinC/cosC
=sinC(cosC+cosAcosB)/(cosAcosBcosC)
=sinC(-cos(A+B)+cosAcosB)/(cosAcosBcosC)
=sinC(-cosAcosB+sinAsinB+cosAcosB)/(cosAcosBcosC)
=sinAsinBsinC/(cosAcosBcosC)
=tgA×tgB×tgC
引理2 三角形ABC中,cotAcotB+cotBcotC+cotCcotA=1
证明:
由引理1知
tgA+tgB+tgC=tgA×tgB×tgC
即
1/cotA +1/cotB + 1/cotC=(1/cotA)×(1/cotB)×(1/cotC)
化简,得
cotAcotB+cotBcotC+cotCcotA=1
引理3 三角形ABC中,cotA+cotB+cotC>0
证明:
cotA+cotB+cotC
=cosA/sinA + cosB/sinB + cosC/sinC
=(cosAsinB+sinAcosB)/(sinAsinB) + cosC/sinC
=sin(A+B)/(sinAsinB) + cosC/sinC
=sinC/(sinAsinB) + cosC/sinC
=(sinCsinC+sinAsinBcosC)/(sinAsinBsinC)
=(1-cosCcosC+sinAsinBcosC)/(sinAsinBsinC)
=[1-cosC(cosC-sinAsinB)]/(sinAsinBsinC)
=[1-cosC(-cos(A+B)-sinAsinB)]/(sinAsinBsinC)
=[1-cosC(-cosAcosB+sinAsinB-sinAsinB)]/(sinAsinBsinC)
=(1+cosAcosBcosC)/(sinAsinBsinC)
由于|cosA|<=1,|cosB|<=1,|cosC|<=1,sinA>0,sinB>0,sinC>0,cosA,cosB,cosC不可能为-1
所以
(1+cosAcosBcosC)/(sinAsinBsinC)>0
即
cotA+cotB+cotC>0
等价结论的证明
(cotA+cotB+cotC)^2
=(cotA)^2+(cotB)^2+(cotC)^2+2(cotAcotB+cotBcotC+cotCcotA)
=(2(cotA)^2+2(cotB)^2+2(cotC)^2-2cotAcotB-2cotBcotC-2cotCcotA)/2+3(cotAcotB+cotBcotC+cotCcotA)
=(cotA-cotB)^2+(cotB-cotC)^2+(cotC-cotA)^2+3 (由引理2)
>=3 (当且仅当cotA=cotB=cotC时,即A=B=C=60°时等号成立)
即
(cotA+cotB+cotC)^2>=3
由引理3知
cotA+cotB+cotC>0
所以
cotA+cotB+cotC>=√3
|
|