|
|
求三元方程 x+xy+xyz=12 ,y+yz+xyz=5 ,z+zx+zxy=6 的所有实数解
x+xy+xyz=12
y+yz+yzx=5
z+zx+zxy=6
z=6/(1+x+xy)
(y-5)(1+x+xy)+6(y+yx)=0
2xy-5x+xy²+7y-5=0
x=(5-7y)/(y²+2y-5)
z=6(y²+2y-5)/[(y²+2y-5)+(5-7y)(1+y)]=-(y²+2y-5)/y²
(5-7y)(1+y-(y²+2y-5)/y)=12(y²+2y-5)
(5-7y)(-y+5)=12y(y²+2y-5)
7y²-40y+25=12y³+24y²-60y
12y³+17y²-20y-25=0
(y+1)(12y²+5y-25)=0
[-5±√(25+1200)]/24=5/4,-5/3
y=-1,5/4,-5/3
x=-2,4,-3
z=6,3/5,2
|
|