数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3316|回复: 1

无穷序列中的矛盾概念

[复制链接]
发表于 2019-7-23 15:52 | 显示全部楼层 |阅读模式
本帖最后由 jzkyllcjl 于 2019-7-23 07:55 编辑

①任何无穷序列都必须有一个通项的写出法则;②无穷序列既具有按照通项写出法则无限延续下去的性质,又具有永远写不到底,永远延续不不到底的性质;这两个性质不是违反形式逻辑中矛盾律的坏矛盾,因为:无限延续是在时间无限延续情况下讲的,延续不到底是对任何有限时间讲的。无穷序列中的省略号不是语文中的通常意义的省略号,而应当是这个具有矛盾着的性质的事物的表示符号。这个矛盾是满足唯物辩证法下对立统一性质的“一切事物中包含着的矛盾方面的相互依赖和相互斗争,决定一切事物的生命,推动一切事物的发展。没有什么事物是不包含矛盾的,没有矛盾,就无有世界”的好矛盾; ③自然数标准无穷数列:0,1,2,3,……(1)中的元素都叫做有限自然数;自然数标准数列(1)的所有元素,即所有自然数是无有穷尽、无有终了、无有最后的;自然标准数列中的省略号,不是通常意义的省略,是补充不完的、写不到底的省略;④不存在能够写出的无穷大自然数,《非标准分析》提出的*N 中的无限大自然数,是人们无法用十进记数法写出的、违反阿基米德性质的无用的虚构;⑤由于所有自然数无法构造完毕,所以 “所有”自然数的所有二字不能随便提出,事实上,笔者证明了如下基本定理。
基本定理(自然数的两个重要性质) ①在不受时间的限制下,任意大确定的自然数都是能够被人们写出的自然数;②全体(或称所有)自然数是人们永远无法写完其所有元素的集合。
证:首先证明定理的第一个论断。由于确定的自然数的位数是确定的,设其为N,又其中每一位上的数字不外0,1,2,……,9中的一个. 设写出这些符号的最长时间为θ,则写出这个确定的自然数的时间不大于Nθ,故在不受时间限制的条件下,任意大确定的自然数是能够被人们写出的。对于定理中的第二个论断,使用反证法. 设有时刻 T存在,使在[0,T]时段内,能把全体自然数写完,现在可以证明这个假设不成立。事实上,由于存在着任意多位数的自然数,每一位的数字必是0,1,2,……,9符号中的一个, 设写出这些符号的最短时间为ε,则总有位数为M自然数的存在,使Mε〉T。这说明,存在着在[0,T]时段内,写不出位数为M的自然数。故定理中的第二个论断也成立。
 楼主| 发表于 2019-7-27 09:07 | 显示全部楼层
首先需要弄请自然数的无穷数列概念。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-13 17:26 , Processed in 0.093143 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表