|
|
又一道有趣的几何
设MF交⊙I于P,则MD^2=MP*MF=MR*ME,PF+PM=MF
1) 设PF交ED于N,则
ND*NE=NF*NP
ND+NE=ED,NF+NP=PF
2) 设PF交RQ于Y,则
YQ*YR=YF*YP
YQ+YR=RQ,YF+YP=PF
3) 设RQ交ED于Z,则
ZD*ZE=ZR*ZQ
ZD+ZE=ED,ZR+ZQ=RQ
-----------
Mathematica解方程:
Solve[{MD^2==MP*MF,MD^2==MR*ME,PF+PM==MF,ND*NE==NF*NP,ND+NE==ED,NF+NP==PF,YQ*YR==YF*YP,YQ+YR==RQ,YF+YP==PF,ZD*ZE==ZR*ZQ,ZD+ZE==ED,ZR+ZQ==RQ},{NP,NF,YP,YF,ZP,ZF},{ND,YQ,ZR}]
结果:
Out[11]//InputForm=
{{NP -> PF/2 - Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)]/2,
YP -> PF/2 - Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)]/2,
YF -> (PF + Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)])/2,
NF -> (PF + Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)])/2},
{NP -> PF/2 - Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)]/2,
YP -> PF/2 + Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)]/2,
YF -> (PF - Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)])/2,
NF -> (PF + Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)])/2},
{NP -> PF/2 + Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)]/2,
YP -> PF/2 - Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)]/2,
YF -> (PF + Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)])/2,
NF -> (PF - Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)])/2},
{NP -> PF/2 + Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)]/2,
YP -> PF/2 + Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)]/2,
YF -> (PF - Sqrt[PF^2 + 4*YR*(YR - ZQ - ZR)])/2,
NF -> (PF - Sqrt[PF^2 + 4*NE*(NE - ZD - ZE)])/2}}
---------
这说明:要证明N,Y,Z是同一个点,还需要证明NE*ND=YR*YQ,...
[br][br]-=-=-=-=- 以下内容由 ataorj 在 时添加 -=-=-=-=-
更正:应去掉,{ND,YQ,ZR},即:
Solve[{MD^2==MP*MF,MD^2==MR*ME,PF+PM==MF,ND*NE==NF*NP,ND+NE==ED,NF+NP==PF,YQ*YR==YF*YP,YQ+YR==RQ,YF+YP==PF,ZD*ZE==ZR*ZQ,ZD+ZE==ED,ZR+ZQ==RQ},{NP,NF,YP,YF,ZP,ZF}] |
|