|
\(\alpha=e^{i 1^{\circ}}=\cos 1^{\circ}+i\sin 1^{\circ}\implies\displaystyle\sum_{k=1}^{360}\alpha^k=\alpha\frac{1-\alpha^{360}}{1-\alpha}=0\)
\(\therefore\quad\sin 1^{\circ}+\sin 2^{\circ}+\cdots+\sin 360^{\circ}=0=\cos 1^{\circ}+\cos 2^{\circ}+\cdots+\cos 360^{\circ}\)
\(\beta=\alpha^2,\;\beta^k=\cos(2k)^{\circ}+i\sin(2k)^{\circ},\;\displaystyle\sum_{k=1}^{360}\beta^k=0\)
\((\cos^2k^{\circ},\sin^2k^{\circ})=\frac{1}{2}(1+\cos(2k)^{\circ},1-\cos(2k)^{\circ})\)
\(\displaystyle\sum_{k=1}^{360}(\cos^2k^{\circ}+i\sin^2k^{\circ})=\frac{1+i}{2}\times 360+\frac{1-i}{2} \text{Re}\sum_{k=1}^{360}\beta^k\)
\(\therefore\quad\displaystyle\sum_{k=1}^{360}\cos^2k^{\circ}=180=\sum_{k=1}^{360}\sin^2k^{\circ}\) |
|