数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3423|回复: 0

关于三维空间向量叉积的几何意义以下理解是否正确?

[复制链接]
发表于 2020-10-14 13:08 | 显示全部楼层 |阅读模式
假设V U W是三个向量,且V U不是零向量且互相不平行,且V x U=W

W代表正交与V 和U张成的平行四边形的一个向量。W与当V U 按照右手法则拇指方向一致。且|W|=V U围成的平行四边形面积=|V|*|U|*sinθ

一旦V U在三维空间的坐标确定。意味着其叉积V x U也确定了。叉积V x U一旦确定。也就意味者V U W张成的平行六面体的体积和方向同时确定了。其体积大小恒为 (V点乘U)的平方。也就是 |W|的平方。当|V|和|U|是确定值时V U的平面夹角是pi/2时,该六面体的体积达到最大,且其是一个长条形直角矩形立方体,其底面积与长边W的边长相等。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-21 01:06 , Processed in 0.077696 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表